This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | f1od.1 | |- F = ( x e. A |-> C ) |
|
| f1o2d.2 | |- ( ( ph /\ x e. A ) -> C e. B ) |
||
| f1o2d.3 | |- ( ( ph /\ y e. B ) -> D e. A ) |
||
| f1o2d.4 | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( x = D <-> y = C ) ) |
||
| Assertion | f1ocnv2d | |- ( ph -> ( F : A -1-1-onto-> B /\ `' F = ( y e. B |-> D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1od.1 | |- F = ( x e. A |-> C ) |
|
| 2 | f1o2d.2 | |- ( ( ph /\ x e. A ) -> C e. B ) |
|
| 3 | f1o2d.3 | |- ( ( ph /\ y e. B ) -> D e. A ) |
|
| 4 | f1o2d.4 | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( x = D <-> y = C ) ) |
|
| 5 | eleq1a | |- ( C e. B -> ( y = C -> y e. B ) ) |
|
| 6 | 2 5 | syl | |- ( ( ph /\ x e. A ) -> ( y = C -> y e. B ) ) |
| 7 | 6 | impr | |- ( ( ph /\ ( x e. A /\ y = C ) ) -> y e. B ) |
| 8 | 4 | biimpar | |- ( ( ( ph /\ ( x e. A /\ y e. B ) ) /\ y = C ) -> x = D ) |
| 9 | 8 | exp42 | |- ( ph -> ( x e. A -> ( y e. B -> ( y = C -> x = D ) ) ) ) |
| 10 | 9 | com34 | |- ( ph -> ( x e. A -> ( y = C -> ( y e. B -> x = D ) ) ) ) |
| 11 | 10 | imp32 | |- ( ( ph /\ ( x e. A /\ y = C ) ) -> ( y e. B -> x = D ) ) |
| 12 | 7 11 | jcai | |- ( ( ph /\ ( x e. A /\ y = C ) ) -> ( y e. B /\ x = D ) ) |
| 13 | eleq1a | |- ( D e. A -> ( x = D -> x e. A ) ) |
|
| 14 | 3 13 | syl | |- ( ( ph /\ y e. B ) -> ( x = D -> x e. A ) ) |
| 15 | 14 | impr | |- ( ( ph /\ ( y e. B /\ x = D ) ) -> x e. A ) |
| 16 | 4 | biimpa | |- ( ( ( ph /\ ( x e. A /\ y e. B ) ) /\ x = D ) -> y = C ) |
| 17 | 16 | exp42 | |- ( ph -> ( x e. A -> ( y e. B -> ( x = D -> y = C ) ) ) ) |
| 18 | 17 | com23 | |- ( ph -> ( y e. B -> ( x e. A -> ( x = D -> y = C ) ) ) ) |
| 19 | 18 | com34 | |- ( ph -> ( y e. B -> ( x = D -> ( x e. A -> y = C ) ) ) ) |
| 20 | 19 | imp32 | |- ( ( ph /\ ( y e. B /\ x = D ) ) -> ( x e. A -> y = C ) ) |
| 21 | 15 20 | jcai | |- ( ( ph /\ ( y e. B /\ x = D ) ) -> ( x e. A /\ y = C ) ) |
| 22 | 12 21 | impbida | |- ( ph -> ( ( x e. A /\ y = C ) <-> ( y e. B /\ x = D ) ) ) |
| 23 | 1 2 3 22 | f1ocnvd | |- ( ph -> ( F : A -1-1-onto-> B /\ `' F = ( y e. B |-> D ) ) ) |