This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only divisor greater than or equal to 2 is itself. (Contributed by Paul Chapman, 26-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isprm4 | |- ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. ( ZZ>= ` 2 ) ( z || P -> z = P ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprm2 | |- ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
|
| 2 | eluz2b3 | |- ( z e. ( ZZ>= ` 2 ) <-> ( z e. NN /\ z =/= 1 ) ) |
|
| 3 | 2 | imbi1i | |- ( ( z e. ( ZZ>= ` 2 ) -> ( z || P -> z = P ) ) <-> ( ( z e. NN /\ z =/= 1 ) -> ( z || P -> z = P ) ) ) |
| 4 | impexp | |- ( ( ( z e. NN /\ z =/= 1 ) -> ( z || P -> z = P ) ) <-> ( z e. NN -> ( z =/= 1 -> ( z || P -> z = P ) ) ) ) |
|
| 5 | bi2.04 | |- ( ( z =/= 1 -> ( z || P -> z = P ) ) <-> ( z || P -> ( z =/= 1 -> z = P ) ) ) |
|
| 6 | df-ne | |- ( z =/= 1 <-> -. z = 1 ) |
|
| 7 | 6 | imbi1i | |- ( ( z =/= 1 -> z = P ) <-> ( -. z = 1 -> z = P ) ) |
| 8 | df-or | |- ( ( z = 1 \/ z = P ) <-> ( -. z = 1 -> z = P ) ) |
|
| 9 | 7 8 | bitr4i | |- ( ( z =/= 1 -> z = P ) <-> ( z = 1 \/ z = P ) ) |
| 10 | 9 | imbi2i | |- ( ( z || P -> ( z =/= 1 -> z = P ) ) <-> ( z || P -> ( z = 1 \/ z = P ) ) ) |
| 11 | 5 10 | bitri | |- ( ( z =/= 1 -> ( z || P -> z = P ) ) <-> ( z || P -> ( z = 1 \/ z = P ) ) ) |
| 12 | 11 | imbi2i | |- ( ( z e. NN -> ( z =/= 1 -> ( z || P -> z = P ) ) ) <-> ( z e. NN -> ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
| 13 | 4 12 | bitri | |- ( ( ( z e. NN /\ z =/= 1 ) -> ( z || P -> z = P ) ) <-> ( z e. NN -> ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
| 14 | 3 13 | bitri | |- ( ( z e. ( ZZ>= ` 2 ) -> ( z || P -> z = P ) ) <-> ( z e. NN -> ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
| 15 | 14 | ralbii2 | |- ( A. z e. ( ZZ>= ` 2 ) ( z || P -> z = P ) <-> A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) ) |
| 16 | 15 | anbi2i | |- ( ( P e. ( ZZ>= ` 2 ) /\ A. z e. ( ZZ>= ` 2 ) ( z || P -> z = P ) ) <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
| 17 | 1 16 | bitr4i | |- ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. ( ZZ>= ` 2 ) ( z || P -> z = P ) ) ) |