This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square function on nonnegative reals is monotonic. (Contributed by NM, 3-Aug-1999) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | le2msq | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A <_ B <-> ( A x. A ) <_ ( B x. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt2msq | |- ( ( ( B e. RR /\ 0 <_ B ) /\ ( A e. RR /\ 0 <_ A ) ) -> ( B < A <-> ( B x. B ) < ( A x. A ) ) ) |
|
| 2 | 1 | ancoms | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( B < A <-> ( B x. B ) < ( A x. A ) ) ) |
| 3 | 2 | notbid | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( -. B < A <-> -. ( B x. B ) < ( A x. A ) ) ) |
| 4 | simpll | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> A e. RR ) |
|
| 5 | simprl | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> B e. RR ) |
|
| 6 | 4 5 | lenltd | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A <_ B <-> -. B < A ) ) |
| 7 | 4 4 | remulcld | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A x. A ) e. RR ) |
| 8 | 5 5 | remulcld | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( B x. B ) e. RR ) |
| 9 | 7 8 | lenltd | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A x. A ) <_ ( B x. B ) <-> -. ( B x. B ) < ( A x. A ) ) ) |
| 10 | 3 6 9 | 3bitr4d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A <_ B <-> ( A x. A ) <_ ( B x. B ) ) ) |