This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication by a number greater than 1. (Contributed by NM, 24-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltmulgt11 | |- ( ( A e. RR /\ B e. RR /\ 0 < A ) -> ( 1 < B <-> A < ( A x. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re | |- 1 e. RR |
|
| 2 | ltmul2 | |- ( ( 1 e. RR /\ B e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( 1 < B <-> ( A x. 1 ) < ( A x. B ) ) ) |
|
| 3 | 1 2 | mp3an1 | |- ( ( B e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( 1 < B <-> ( A x. 1 ) < ( A x. B ) ) ) |
| 4 | 3 | 3impb | |- ( ( B e. RR /\ A e. RR /\ 0 < A ) -> ( 1 < B <-> ( A x. 1 ) < ( A x. B ) ) ) |
| 5 | 4 | 3com12 | |- ( ( A e. RR /\ B e. RR /\ 0 < A ) -> ( 1 < B <-> ( A x. 1 ) < ( A x. B ) ) ) |
| 6 | ax-1rid | |- ( A e. RR -> ( A x. 1 ) = A ) |
|
| 7 | 6 | 3ad2ant1 | |- ( ( A e. RR /\ B e. RR /\ 0 < A ) -> ( A x. 1 ) = A ) |
| 8 | 7 | breq1d | |- ( ( A e. RR /\ B e. RR /\ 0 < A ) -> ( ( A x. 1 ) < ( A x. B ) <-> A < ( A x. B ) ) ) |
| 9 | 5 8 | bitrd | |- ( ( A e. RR /\ B e. RR /\ 0 < A ) -> ( 1 < B <-> A < ( A x. B ) ) ) |