This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lemma to assist theorems of || with no antecedents. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvds0lem | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K x. M ) = N ) -> M || N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( x = K -> ( x x. M ) = ( K x. M ) ) |
|
| 2 | 1 | eqeq1d | |- ( x = K -> ( ( x x. M ) = N <-> ( K x. M ) = N ) ) |
| 3 | 2 | rspcev | |- ( ( K e. ZZ /\ ( K x. M ) = N ) -> E. x e. ZZ ( x x. M ) = N ) |
| 4 | 3 | adantl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ ( K x. M ) = N ) ) -> E. x e. ZZ ( x x. M ) = N ) |
| 5 | divides | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> E. x e. ZZ ( x x. M ) = N ) ) |
|
| 6 | 5 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ ( K x. M ) = N ) ) -> ( M || N <-> E. x e. ZZ ( x x. M ) = N ) ) |
| 7 | 4 6 | mpbird | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ ( K x. M ) = N ) ) -> M || N ) |
| 8 | 7 | expr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( K x. M ) = N -> M || N ) ) |
| 9 | 8 | 3impa | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( ( K x. M ) = N -> M || N ) ) |
| 10 | 9 | 3comr | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) = N -> M || N ) ) |
| 11 | 10 | imp | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K x. M ) = N ) -> M || N ) |