This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for iseralt . The terms of an alternating series form a chain of inequalities in alternate terms, so that for example S ( 1 ) <_ S ( 3 ) <_ S ( 5 ) <_ ... and ... <_ S ( 4 ) <_ S ( 2 ) <_ S ( 0 ) (assuming M = 0 so that these terms are defined). (Contributed by Mario Carneiro, 6-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iseralt.1 | |- Z = ( ZZ>= ` M ) |
|
| iseralt.2 | |- ( ph -> M e. ZZ ) |
||
| iseralt.3 | |- ( ph -> G : Z --> RR ) |
||
| iseralt.4 | |- ( ( ph /\ k e. Z ) -> ( G ` ( k + 1 ) ) <_ ( G ` k ) ) |
||
| iseralt.5 | |- ( ph -> G ~~> 0 ) |
||
| iseralt.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( ( -u 1 ^ k ) x. ( G ` k ) ) ) |
||
| Assertion | iseraltlem2 | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseralt.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | iseralt.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | iseralt.3 | |- ( ph -> G : Z --> RR ) |
|
| 4 | iseralt.4 | |- ( ( ph /\ k e. Z ) -> ( G ` ( k + 1 ) ) <_ ( G ` k ) ) |
|
| 5 | iseralt.5 | |- ( ph -> G ~~> 0 ) |
|
| 6 | iseralt.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( ( -u 1 ^ k ) x. ( G ` k ) ) ) |
|
| 7 | oveq2 | |- ( x = 0 -> ( 2 x. x ) = ( 2 x. 0 ) ) |
|
| 8 | 2t0e0 | |- ( 2 x. 0 ) = 0 |
|
| 9 | 7 8 | eqtrdi | |- ( x = 0 -> ( 2 x. x ) = 0 ) |
| 10 | 9 | oveq2d | |- ( x = 0 -> ( N + ( 2 x. x ) ) = ( N + 0 ) ) |
| 11 | 10 | fveq2d | |- ( x = 0 -> ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) = ( seq M ( + , F ) ` ( N + 0 ) ) ) |
| 12 | 11 | oveq2d | |- ( x = 0 -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) ) = ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 0 ) ) ) ) |
| 13 | 12 | breq1d | |- ( x = 0 -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) <-> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 0 ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) |
| 14 | 13 | imbi2d | |- ( x = 0 -> ( ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) <-> ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 0 ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) ) |
| 15 | oveq2 | |- ( x = n -> ( 2 x. x ) = ( 2 x. n ) ) |
|
| 16 | 15 | oveq2d | |- ( x = n -> ( N + ( 2 x. x ) ) = ( N + ( 2 x. n ) ) ) |
| 17 | 16 | fveq2d | |- ( x = n -> ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) = ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) |
| 18 | 17 | oveq2d | |- ( x = n -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) ) = ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) ) |
| 19 | 18 | breq1d | |- ( x = n -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) <-> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) |
| 20 | 19 | imbi2d | |- ( x = n -> ( ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) <-> ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) ) |
| 21 | oveq2 | |- ( x = ( n + 1 ) -> ( 2 x. x ) = ( 2 x. ( n + 1 ) ) ) |
|
| 22 | 21 | oveq2d | |- ( x = ( n + 1 ) -> ( N + ( 2 x. x ) ) = ( N + ( 2 x. ( n + 1 ) ) ) ) |
| 23 | 22 | fveq2d | |- ( x = ( n + 1 ) -> ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) = ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) |
| 24 | 23 | oveq2d | |- ( x = ( n + 1 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) ) = ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) ) |
| 25 | 24 | breq1d | |- ( x = ( n + 1 ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) <-> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) |
| 26 | 25 | imbi2d | |- ( x = ( n + 1 ) -> ( ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) <-> ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) ) |
| 27 | oveq2 | |- ( x = K -> ( 2 x. x ) = ( 2 x. K ) ) |
|
| 28 | 27 | oveq2d | |- ( x = K -> ( N + ( 2 x. x ) ) = ( N + ( 2 x. K ) ) ) |
| 29 | 28 | fveq2d | |- ( x = K -> ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) = ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) |
| 30 | 29 | oveq2d | |- ( x = K -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) ) = ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) ) |
| 31 | 30 | breq1d | |- ( x = K -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) <-> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) |
| 32 | 31 | imbi2d | |- ( x = K -> ( ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. x ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) <-> ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) ) |
| 33 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 34 | 1 33 | eqsstri | |- Z C_ ZZ |
| 35 | 34 | a1i | |- ( ph -> Z C_ ZZ ) |
| 36 | 35 | sselda | |- ( ( ph /\ N e. Z ) -> N e. ZZ ) |
| 37 | 36 | zcnd | |- ( ( ph /\ N e. Z ) -> N e. CC ) |
| 38 | 37 | addridd | |- ( ( ph /\ N e. Z ) -> ( N + 0 ) = N ) |
| 39 | 38 | fveq2d | |- ( ( ph /\ N e. Z ) -> ( seq M ( + , F ) ` ( N + 0 ) ) = ( seq M ( + , F ) ` N ) ) |
| 40 | 39 | oveq2d | |- ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 0 ) ) ) = ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) |
| 41 | neg1rr | |- -u 1 e. RR |
|
| 42 | neg1ne0 | |- -u 1 =/= 0 |
|
| 43 | reexpclz | |- ( ( -u 1 e. RR /\ -u 1 =/= 0 /\ N e. ZZ ) -> ( -u 1 ^ N ) e. RR ) |
|
| 44 | 41 42 36 43 | mp3an12i | |- ( ( ph /\ N e. Z ) -> ( -u 1 ^ N ) e. RR ) |
| 45 | 35 | sselda | |- ( ( ph /\ k e. Z ) -> k e. ZZ ) |
| 46 | reexpclz | |- ( ( -u 1 e. RR /\ -u 1 =/= 0 /\ k e. ZZ ) -> ( -u 1 ^ k ) e. RR ) |
|
| 47 | 41 42 45 46 | mp3an12i | |- ( ( ph /\ k e. Z ) -> ( -u 1 ^ k ) e. RR ) |
| 48 | 3 | ffvelcdmda | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. RR ) |
| 49 | 47 48 | remulcld | |- ( ( ph /\ k e. Z ) -> ( ( -u 1 ^ k ) x. ( G ` k ) ) e. RR ) |
| 50 | 6 49 | eqeltrd | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
| 51 | 1 2 50 | serfre | |- ( ph -> seq M ( + , F ) : Z --> RR ) |
| 52 | 51 | ffvelcdmda | |- ( ( ph /\ N e. Z ) -> ( seq M ( + , F ) ` N ) e. RR ) |
| 53 | 44 52 | remulcld | |- ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) e. RR ) |
| 54 | 53 | leidd | |- ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) |
| 55 | 40 54 | eqbrtrd | |- ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 0 ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) |
| 56 | 3 | ad2antrr | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> G : Z --> RR ) |
| 57 | ax-1cn | |- 1 e. CC |
|
| 58 | 57 | 2timesi | |- ( 2 x. 1 ) = ( 1 + 1 ) |
| 59 | 58 | oveq2i | |- ( ( N + ( 2 x. n ) ) + ( 2 x. 1 ) ) = ( ( N + ( 2 x. n ) ) + ( 1 + 1 ) ) |
| 60 | simpr | |- ( ( ph /\ N e. Z ) -> N e. Z ) |
|
| 61 | 60 1 | eleqtrdi | |- ( ( ph /\ N e. Z ) -> N e. ( ZZ>= ` M ) ) |
| 62 | 61 | adantr | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> N e. ( ZZ>= ` M ) ) |
| 63 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 64 | 62 63 | syl | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> N e. ZZ ) |
| 65 | 64 | zcnd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> N e. CC ) |
| 66 | 2cn | |- 2 e. CC |
|
| 67 | nn0cn | |- ( n e. NN0 -> n e. CC ) |
|
| 68 | 67 | adantl | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> n e. CC ) |
| 69 | mulcl | |- ( ( 2 e. CC /\ n e. CC ) -> ( 2 x. n ) e. CC ) |
|
| 70 | 66 68 69 | sylancr | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( 2 x. n ) e. CC ) |
| 71 | 66 57 | mulcli | |- ( 2 x. 1 ) e. CC |
| 72 | 71 | a1i | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( 2 x. 1 ) e. CC ) |
| 73 | 65 70 72 | addassd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( N + ( 2 x. n ) ) + ( 2 x. 1 ) ) = ( N + ( ( 2 x. n ) + ( 2 x. 1 ) ) ) ) |
| 74 | 59 73 | eqtr3id | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( N + ( 2 x. n ) ) + ( 1 + 1 ) ) = ( N + ( ( 2 x. n ) + ( 2 x. 1 ) ) ) ) |
| 75 | 2nn0 | |- 2 e. NN0 |
|
| 76 | simpr | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> n e. NN0 ) |
|
| 77 | nn0mulcl | |- ( ( 2 e. NN0 /\ n e. NN0 ) -> ( 2 x. n ) e. NN0 ) |
|
| 78 | 75 76 77 | sylancr | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( 2 x. n ) e. NN0 ) |
| 79 | uzaddcl | |- ( ( N e. ( ZZ>= ` M ) /\ ( 2 x. n ) e. NN0 ) -> ( N + ( 2 x. n ) ) e. ( ZZ>= ` M ) ) |
|
| 80 | 62 78 79 | syl2anc | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( N + ( 2 x. n ) ) e. ( ZZ>= ` M ) ) |
| 81 | 33 80 | sselid | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( N + ( 2 x. n ) ) e. ZZ ) |
| 82 | 81 | zcnd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( N + ( 2 x. n ) ) e. CC ) |
| 83 | 1cnd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> 1 e. CC ) |
|
| 84 | 82 83 83 | addassd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) = ( ( N + ( 2 x. n ) ) + ( 1 + 1 ) ) ) |
| 85 | 2cnd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> 2 e. CC ) |
|
| 86 | 85 68 83 | adddid | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( 2 x. ( n + 1 ) ) = ( ( 2 x. n ) + ( 2 x. 1 ) ) ) |
| 87 | 86 | oveq2d | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( N + ( 2 x. ( n + 1 ) ) ) = ( N + ( ( 2 x. n ) + ( 2 x. 1 ) ) ) ) |
| 88 | 74 84 87 | 3eqtr4d | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) = ( N + ( 2 x. ( n + 1 ) ) ) ) |
| 89 | peano2nn0 | |- ( n e. NN0 -> ( n + 1 ) e. NN0 ) |
|
| 90 | 89 | adantl | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( n + 1 ) e. NN0 ) |
| 91 | nn0mulcl | |- ( ( 2 e. NN0 /\ ( n + 1 ) e. NN0 ) -> ( 2 x. ( n + 1 ) ) e. NN0 ) |
|
| 92 | 75 90 91 | sylancr | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( 2 x. ( n + 1 ) ) e. NN0 ) |
| 93 | uzaddcl | |- ( ( N e. ( ZZ>= ` M ) /\ ( 2 x. ( n + 1 ) ) e. NN0 ) -> ( N + ( 2 x. ( n + 1 ) ) ) e. ( ZZ>= ` M ) ) |
|
| 94 | 62 92 93 | syl2anc | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( N + ( 2 x. ( n + 1 ) ) ) e. ( ZZ>= ` M ) ) |
| 95 | 94 1 | eleqtrrdi | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( N + ( 2 x. ( n + 1 ) ) ) e. Z ) |
| 96 | 88 95 | eqeltrd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) e. Z ) |
| 97 | 56 96 | ffvelcdmd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) e. RR ) |
| 98 | peano2uz | |- ( ( N + ( 2 x. n ) ) e. ( ZZ>= ` M ) -> ( ( N + ( 2 x. n ) ) + 1 ) e. ( ZZ>= ` M ) ) |
|
| 99 | 80 98 | syl | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( N + ( 2 x. n ) ) + 1 ) e. ( ZZ>= ` M ) ) |
| 100 | 99 1 | eleqtrrdi | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( N + ( 2 x. n ) ) + 1 ) e. Z ) |
| 101 | 56 100 | ffvelcdmd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) e. RR ) |
| 102 | 97 101 | resubcld | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) - ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) e. RR ) |
| 103 | 0red | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> 0 e. RR ) |
|
| 104 | 44 | adantr | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u 1 ^ N ) e. RR ) |
| 105 | 51 | ad2antrr | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> seq M ( + , F ) : Z --> RR ) |
| 106 | 80 1 | eleqtrrdi | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( N + ( 2 x. n ) ) e. Z ) |
| 107 | 105 106 | ffvelcdmd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) e. RR ) |
| 108 | 104 107 | remulcld | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) e. RR ) |
| 109 | fvoveq1 | |- ( k = ( ( N + ( 2 x. n ) ) + 1 ) -> ( G ` ( k + 1 ) ) = ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) |
|
| 110 | fveq2 | |- ( k = ( ( N + ( 2 x. n ) ) + 1 ) -> ( G ` k ) = ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) |
|
| 111 | 109 110 | breq12d | |- ( k = ( ( N + ( 2 x. n ) ) + 1 ) -> ( ( G ` ( k + 1 ) ) <_ ( G ` k ) <-> ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) <_ ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) |
| 112 | 4 | ralrimiva | |- ( ph -> A. k e. Z ( G ` ( k + 1 ) ) <_ ( G ` k ) ) |
| 113 | 112 | ad2antrr | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> A. k e. Z ( G ` ( k + 1 ) ) <_ ( G ` k ) ) |
| 114 | 111 113 100 | rspcdva | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) <_ ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) |
| 115 | 97 101 | suble0d | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) - ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) <_ 0 <-> ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) <_ ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) |
| 116 | 114 115 | mpbird | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) - ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) <_ 0 ) |
| 117 | 102 103 108 116 | leadd2dd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) + ( ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) - ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) <_ ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) + 0 ) ) |
| 118 | seqp1 | |- ( ( ( N + ( 2 x. n ) ) + 1 ) e. ( ZZ>= ` M ) -> ( seq M ( + , F ) ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) = ( ( seq M ( + , F ) ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) |
|
| 119 | 99 118 | syl | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( seq M ( + , F ) ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) = ( ( seq M ( + , F ) ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) |
| 120 | seqp1 | |- ( ( N + ( 2 x. n ) ) e. ( ZZ>= ` M ) -> ( seq M ( + , F ) ` ( ( N + ( 2 x. n ) ) + 1 ) ) = ( ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) + ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) |
|
| 121 | 80 120 | syl | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( seq M ( + , F ) ` ( ( N + ( 2 x. n ) ) + 1 ) ) = ( ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) + ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) |
| 122 | 121 | oveq1d | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( seq M ( + , F ) ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) = ( ( ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) + ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) |
| 123 | 119 122 | eqtrd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( seq M ( + , F ) ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) = ( ( ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) + ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) |
| 124 | 88 | fveq2d | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( seq M ( + , F ) ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) = ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) |
| 125 | 107 | recnd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) e. CC ) |
| 126 | fveq2 | |- ( k = ( ( N + ( 2 x. n ) ) + 1 ) -> ( F ` k ) = ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) |
|
| 127 | oveq2 | |- ( k = ( ( N + ( 2 x. n ) ) + 1 ) -> ( -u 1 ^ k ) = ( -u 1 ^ ( ( N + ( 2 x. n ) ) + 1 ) ) ) |
|
| 128 | 127 110 | oveq12d | |- ( k = ( ( N + ( 2 x. n ) ) + 1 ) -> ( ( -u 1 ^ k ) x. ( G ` k ) ) = ( ( -u 1 ^ ( ( N + ( 2 x. n ) ) + 1 ) ) x. ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) |
| 129 | 126 128 | eqeq12d | |- ( k = ( ( N + ( 2 x. n ) ) + 1 ) -> ( ( F ` k ) = ( ( -u 1 ^ k ) x. ( G ` k ) ) <-> ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) = ( ( -u 1 ^ ( ( N + ( 2 x. n ) ) + 1 ) ) x. ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) ) |
| 130 | 6 | ralrimiva | |- ( ph -> A. k e. Z ( F ` k ) = ( ( -u 1 ^ k ) x. ( G ` k ) ) ) |
| 131 | 130 | ad2antrr | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> A. k e. Z ( F ` k ) = ( ( -u 1 ^ k ) x. ( G ` k ) ) ) |
| 132 | 129 131 100 | rspcdva | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) = ( ( -u 1 ^ ( ( N + ( 2 x. n ) ) + 1 ) ) x. ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) |
| 133 | neg1cn | |- -u 1 e. CC |
|
| 134 | 133 | a1i | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> -u 1 e. CC ) |
| 135 | 42 | a1i | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> -u 1 =/= 0 ) |
| 136 | 134 135 81 | expp1zd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u 1 ^ ( ( N + ( 2 x. n ) ) + 1 ) ) = ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. -u 1 ) ) |
| 137 | 41 | a1i | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> -u 1 e. RR ) |
| 138 | 137 135 81 | reexpclzd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u 1 ^ ( N + ( 2 x. n ) ) ) e. RR ) |
| 139 | 138 | recnd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u 1 ^ ( N + ( 2 x. n ) ) ) e. CC ) |
| 140 | mulcom | |- ( ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) e. CC /\ -u 1 e. CC ) -> ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. -u 1 ) = ( -u 1 x. ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) ) |
|
| 141 | 139 133 140 | sylancl | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. -u 1 ) = ( -u 1 x. ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) ) |
| 142 | 139 | mulm1d | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u 1 x. ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) = -u ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) |
| 143 | 136 141 142 | 3eqtrd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u 1 ^ ( ( N + ( 2 x. n ) ) + 1 ) ) = -u ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) |
| 144 | 143 | oveq1d | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ ( ( N + ( 2 x. n ) ) + 1 ) ) x. ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) = ( -u ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) |
| 145 | 101 | recnd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) e. CC ) |
| 146 | mulneg12 | |- ( ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) e. CC /\ ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) e. CC ) -> ( -u ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) = ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) |
|
| 147 | 139 145 146 | syl2anc | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) = ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) |
| 148 | 132 144 147 | 3eqtrd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) = ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) |
| 149 | 101 | renegcld | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) e. RR ) |
| 150 | 138 149 | remulcld | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) e. RR ) |
| 151 | 148 150 | eqeltrd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) e. RR ) |
| 152 | 151 | recnd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) e. CC ) |
| 153 | fveq2 | |- ( k = ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) -> ( F ` k ) = ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) |
|
| 154 | oveq2 | |- ( k = ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) -> ( -u 1 ^ k ) = ( -u 1 ^ ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) |
|
| 155 | fveq2 | |- ( k = ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) -> ( G ` k ) = ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) |
|
| 156 | 154 155 | oveq12d | |- ( k = ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) -> ( ( -u 1 ^ k ) x. ( G ` k ) ) = ( ( -u 1 ^ ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) x. ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) |
| 157 | 153 156 | eqeq12d | |- ( k = ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) -> ( ( F ` k ) = ( ( -u 1 ^ k ) x. ( G ` k ) ) <-> ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) = ( ( -u 1 ^ ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) x. ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) ) |
| 158 | 157 131 96 | rspcdva | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) = ( ( -u 1 ^ ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) x. ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) |
| 159 | 81 | peano2zd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( N + ( 2 x. n ) ) + 1 ) e. ZZ ) |
| 160 | 134 135 159 | expp1zd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u 1 ^ ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) = ( ( -u 1 ^ ( ( N + ( 2 x. n ) ) + 1 ) ) x. -u 1 ) ) |
| 161 | 143 | oveq1d | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ ( ( N + ( 2 x. n ) ) + 1 ) ) x. -u 1 ) = ( -u ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. -u 1 ) ) |
| 162 | mul2neg | |- ( ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) e. CC /\ 1 e. CC ) -> ( -u ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. -u 1 ) = ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. 1 ) ) |
|
| 163 | 139 57 162 | sylancl | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. -u 1 ) = ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. 1 ) ) |
| 164 | 139 | mulridd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. 1 ) = ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) |
| 165 | 163 164 | eqtrd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. -u 1 ) = ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) |
| 166 | 160 161 165 | 3eqtrd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u 1 ^ ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) = ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) |
| 167 | 166 | oveq1d | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) x. ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) = ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) |
| 168 | 158 167 | eqtrd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) = ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) |
| 169 | 138 97 | remulcld | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) e. RR ) |
| 170 | 168 169 | eqeltrd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) e. RR ) |
| 171 | 170 | recnd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) e. CC ) |
| 172 | 125 152 171 | addassd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) + ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) = ( ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) + ( ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) ) |
| 173 | 123 124 172 | 3eqtr3d | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) = ( ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) + ( ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) ) |
| 174 | 173 | oveq2d | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) = ( ( -u 1 ^ N ) x. ( ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) + ( ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) ) ) |
| 175 | 104 | recnd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u 1 ^ N ) e. CC ) |
| 176 | 151 170 | readdcld | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) e. RR ) |
| 177 | 176 | recnd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) e. CC ) |
| 178 | 175 125 177 | adddid | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) + ( ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) ) = ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) + ( ( -u 1 ^ N ) x. ( ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) ) ) |
| 179 | 175 152 171 | adddid | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) = ( ( ( -u 1 ^ N ) x. ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) + ( ( -u 1 ^ N ) x. ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) ) |
| 180 | 148 | oveq2d | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) = ( ( -u 1 ^ N ) x. ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) ) |
| 181 | 149 | recnd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) e. CC ) |
| 182 | 175 139 181 | mulassd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) x. -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) = ( ( -u 1 ^ N ) x. ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) ) |
| 183 | 180 182 | eqtr4d | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) = ( ( ( -u 1 ^ N ) x. ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) x. -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) |
| 184 | 85 65 68 | adddid | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( 2 x. ( N + n ) ) = ( ( 2 x. N ) + ( 2 x. n ) ) ) |
| 185 | 65 | 2timesd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( 2 x. N ) = ( N + N ) ) |
| 186 | 185 | oveq1d | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( 2 x. N ) + ( 2 x. n ) ) = ( ( N + N ) + ( 2 x. n ) ) ) |
| 187 | 65 65 70 | addassd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( N + N ) + ( 2 x. n ) ) = ( N + ( N + ( 2 x. n ) ) ) ) |
| 188 | 184 186 187 | 3eqtrrd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( N + ( N + ( 2 x. n ) ) ) = ( 2 x. ( N + n ) ) ) |
| 189 | 188 | oveq2d | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u 1 ^ ( N + ( N + ( 2 x. n ) ) ) ) = ( -u 1 ^ ( 2 x. ( N + n ) ) ) ) |
| 190 | expaddz | |- ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( N e. ZZ /\ ( N + ( 2 x. n ) ) e. ZZ ) ) -> ( -u 1 ^ ( N + ( N + ( 2 x. n ) ) ) ) = ( ( -u 1 ^ N ) x. ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) ) |
|
| 191 | 134 135 64 81 190 | syl22anc | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u 1 ^ ( N + ( N + ( 2 x. n ) ) ) ) = ( ( -u 1 ^ N ) x. ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) ) |
| 192 | 2z | |- 2 e. ZZ |
|
| 193 | 192 | a1i | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> 2 e. ZZ ) |
| 194 | nn0z | |- ( n e. NN0 -> n e. ZZ ) |
|
| 195 | zaddcl | |- ( ( N e. ZZ /\ n e. ZZ ) -> ( N + n ) e. ZZ ) |
|
| 196 | 36 194 195 | syl2an | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( N + n ) e. ZZ ) |
| 197 | expmulz | |- ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( 2 e. ZZ /\ ( N + n ) e. ZZ ) ) -> ( -u 1 ^ ( 2 x. ( N + n ) ) ) = ( ( -u 1 ^ 2 ) ^ ( N + n ) ) ) |
|
| 198 | 134 135 193 196 197 | syl22anc | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u 1 ^ ( 2 x. ( N + n ) ) ) = ( ( -u 1 ^ 2 ) ^ ( N + n ) ) ) |
| 199 | neg1sqe1 | |- ( -u 1 ^ 2 ) = 1 |
|
| 200 | 199 | oveq1i | |- ( ( -u 1 ^ 2 ) ^ ( N + n ) ) = ( 1 ^ ( N + n ) ) |
| 201 | 1exp | |- ( ( N + n ) e. ZZ -> ( 1 ^ ( N + n ) ) = 1 ) |
|
| 202 | 196 201 | syl | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( 1 ^ ( N + n ) ) = 1 ) |
| 203 | 200 202 | eqtrid | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ 2 ) ^ ( N + n ) ) = 1 ) |
| 204 | 198 203 | eqtrd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u 1 ^ ( 2 x. ( N + n ) ) ) = 1 ) |
| 205 | 189 191 204 | 3eqtr3d | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) = 1 ) |
| 206 | 205 | oveq1d | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) x. -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) = ( 1 x. -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) |
| 207 | 181 | mullidd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( 1 x. -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) = -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) |
| 208 | 183 206 207 | 3eqtrd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) = -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) |
| 209 | 168 | oveq2d | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) = ( ( -u 1 ^ N ) x. ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) ) |
| 210 | 97 | recnd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) e. CC ) |
| 211 | 175 139 210 | mulassd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) x. ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) = ( ( -u 1 ^ N ) x. ( ( -u 1 ^ ( N + ( 2 x. n ) ) ) x. ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) ) |
| 212 | 209 211 | eqtr4d | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) = ( ( ( -u 1 ^ N ) x. ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) x. ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) |
| 213 | 205 | oveq1d | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( -u 1 ^ ( N + ( 2 x. n ) ) ) ) x. ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) = ( 1 x. ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) |
| 214 | 210 | mullidd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( 1 x. ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) = ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) |
| 215 | 212 213 214 | 3eqtrd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) = ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) |
| 216 | 208 215 | oveq12d | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) + ( ( -u 1 ^ N ) x. ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) = ( -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) |
| 217 | 145 | negcld | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) e. CC ) |
| 218 | 217 210 | addcomd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) = ( ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) + -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) |
| 219 | 210 145 | negsubd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) + -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) = ( ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) - ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) |
| 220 | 218 219 | eqtrd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( -u ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) = ( ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) - ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) |
| 221 | 179 216 220 | 3eqtrd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) = ( ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) - ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) |
| 222 | 221 | oveq2d | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) + ( ( -u 1 ^ N ) x. ( ( F ` ( ( N + ( 2 x. n ) ) + 1 ) ) + ( F ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) ) ) ) = ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) + ( ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) - ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) ) |
| 223 | 174 178 222 | 3eqtrrd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) + ( ( G ` ( ( ( N + ( 2 x. n ) ) + 1 ) + 1 ) ) - ( G ` ( ( N + ( 2 x. n ) ) + 1 ) ) ) ) = ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) ) |
| 224 | 108 | recnd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) e. CC ) |
| 225 | 224 | addridd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) + 0 ) = ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) ) |
| 226 | 117 223 225 | 3brtr3d | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) ) |
| 227 | 105 95 | ffvelcdmd | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) e. RR ) |
| 228 | 104 227 | remulcld | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) e. RR ) |
| 229 | 53 | adantr | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) e. RR ) |
| 230 | letr | |- ( ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) e. RR /\ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) e. RR /\ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) e. RR ) -> ( ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) /\ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) |
|
| 231 | 228 108 229 230 | syl3anc | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) /\ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) |
| 232 | 226 231 | mpand | |- ( ( ( ph /\ N e. Z ) /\ n e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) |
| 233 | 232 | expcom | |- ( n e. NN0 -> ( ( ph /\ N e. Z ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) ) |
| 234 | 233 | a2d | |- ( n e. NN0 -> ( ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. n ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) -> ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. ( n + 1 ) ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) ) |
| 235 | 14 20 26 32 55 234 | nn0ind | |- ( K e. NN0 -> ( ( ph /\ N e. Z ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) |
| 236 | 235 | com12 | |- ( ( ph /\ N e. Z ) -> ( K e. NN0 -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) |
| 237 | 236 | 3impia | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) |