This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Product of exponents law for integer exponentiation. Proposition 10-4.2(b) of Gleason p. 135. (Contributed by Mario Carneiro, 7-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expmulz | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( A ^ ( M x. N ) ) = ( ( A ^ M ) ^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0nn | |- ( N e. ZZ <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
|
| 2 | elznn0nn | |- ( M e. ZZ <-> ( M e. NN0 \/ ( M e. RR /\ -u M e. NN ) ) ) |
|
| 3 | expmul | |- ( ( A e. CC /\ M e. NN0 /\ N e. NN0 ) -> ( A ^ ( M x. N ) ) = ( ( A ^ M ) ^ N ) ) |
|
| 4 | 3 | 3expia | |- ( ( A e. CC /\ M e. NN0 ) -> ( N e. NN0 -> ( A ^ ( M x. N ) ) = ( ( A ^ M ) ^ N ) ) ) |
| 5 | 4 | adantlr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. NN0 ) -> ( N e. NN0 -> ( A ^ ( M x. N ) ) = ( ( A ^ M ) ^ N ) ) ) |
| 6 | simp2l | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> M e. RR ) |
|
| 7 | 6 | recnd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> M e. CC ) |
| 8 | simp3 | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> N e. NN0 ) |
|
| 9 | 8 | nn0cnd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> N e. CC ) |
| 10 | 7 9 | mulneg1d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( -u M x. N ) = -u ( M x. N ) ) |
| 11 | 10 | oveq2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ ( -u M x. N ) ) = ( A ^ -u ( M x. N ) ) ) |
| 12 | simp1l | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> A e. CC ) |
|
| 13 | simp2r | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> -u M e. NN ) |
|
| 14 | 13 | nnnn0d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> -u M e. NN0 ) |
| 15 | expmul | |- ( ( A e. CC /\ -u M e. NN0 /\ N e. NN0 ) -> ( A ^ ( -u M x. N ) ) = ( ( A ^ -u M ) ^ N ) ) |
|
| 16 | 12 14 8 15 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ ( -u M x. N ) ) = ( ( A ^ -u M ) ^ N ) ) |
| 17 | 11 16 | eqtr3d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ -u ( M x. N ) ) = ( ( A ^ -u M ) ^ N ) ) |
| 18 | 17 | oveq2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( 1 / ( A ^ -u ( M x. N ) ) ) = ( 1 / ( ( A ^ -u M ) ^ N ) ) ) |
| 19 | expcl | |- ( ( A e. CC /\ -u M e. NN0 ) -> ( A ^ -u M ) e. CC ) |
|
| 20 | 12 14 19 | syl2anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ -u M ) e. CC ) |
| 21 | simp1r | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> A =/= 0 ) |
|
| 22 | 13 | nnzd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> -u M e. ZZ ) |
| 23 | expne0i | |- ( ( A e. CC /\ A =/= 0 /\ -u M e. ZZ ) -> ( A ^ -u M ) =/= 0 ) |
|
| 24 | 12 21 22 23 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ -u M ) =/= 0 ) |
| 25 | 8 | nn0zd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> N e. ZZ ) |
| 26 | exprec | |- ( ( ( A ^ -u M ) e. CC /\ ( A ^ -u M ) =/= 0 /\ N e. ZZ ) -> ( ( 1 / ( A ^ -u M ) ) ^ N ) = ( 1 / ( ( A ^ -u M ) ^ N ) ) ) |
|
| 27 | 20 24 25 26 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( ( 1 / ( A ^ -u M ) ) ^ N ) = ( 1 / ( ( A ^ -u M ) ^ N ) ) ) |
| 28 | 18 27 | eqtr4d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( 1 / ( A ^ -u ( M x. N ) ) ) = ( ( 1 / ( A ^ -u M ) ) ^ N ) ) |
| 29 | 7 9 | mulcld | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( M x. N ) e. CC ) |
| 30 | 14 8 | nn0mulcld | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( -u M x. N ) e. NN0 ) |
| 31 | 10 30 | eqeltrrd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> -u ( M x. N ) e. NN0 ) |
| 32 | expneg2 | |- ( ( A e. CC /\ ( M x. N ) e. CC /\ -u ( M x. N ) e. NN0 ) -> ( A ^ ( M x. N ) ) = ( 1 / ( A ^ -u ( M x. N ) ) ) ) |
|
| 33 | 12 29 31 32 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ ( M x. N ) ) = ( 1 / ( A ^ -u ( M x. N ) ) ) ) |
| 34 | expneg2 | |- ( ( A e. CC /\ M e. CC /\ -u M e. NN0 ) -> ( A ^ M ) = ( 1 / ( A ^ -u M ) ) ) |
|
| 35 | 12 7 14 34 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ M ) = ( 1 / ( A ^ -u M ) ) ) |
| 36 | 35 | oveq1d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( ( A ^ M ) ^ N ) = ( ( 1 / ( A ^ -u M ) ) ^ N ) ) |
| 37 | 28 33 36 | 3eqtr4d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ ( M x. N ) ) = ( ( A ^ M ) ^ N ) ) |
| 38 | 37 | 3expia | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) ) -> ( N e. NN0 -> ( A ^ ( M x. N ) ) = ( ( A ^ M ) ^ N ) ) ) |
| 39 | 5 38 | jaodan | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. NN0 \/ ( M e. RR /\ -u M e. NN ) ) ) -> ( N e. NN0 -> ( A ^ ( M x. N ) ) = ( ( A ^ M ) ^ N ) ) ) |
| 40 | simp2 | |- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. NN0 /\ ( N e. RR /\ -u N e. NN ) ) -> M e. NN0 ) |
|
| 41 | 40 | nn0cnd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. NN0 /\ ( N e. RR /\ -u N e. NN ) ) -> M e. CC ) |
| 42 | simp3l | |- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. NN0 /\ ( N e. RR /\ -u N e. NN ) ) -> N e. RR ) |
|
| 43 | 42 | recnd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. NN0 /\ ( N e. RR /\ -u N e. NN ) ) -> N e. CC ) |
| 44 | 41 43 | mulneg2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. NN0 /\ ( N e. RR /\ -u N e. NN ) ) -> ( M x. -u N ) = -u ( M x. N ) ) |
| 45 | 44 | oveq2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. NN0 /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ ( M x. -u N ) ) = ( A ^ -u ( M x. N ) ) ) |
| 46 | simp1l | |- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. NN0 /\ ( N e. RR /\ -u N e. NN ) ) -> A e. CC ) |
|
| 47 | simp3r | |- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. NN0 /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. NN ) |
|
| 48 | 47 | nnnn0d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. NN0 /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. NN0 ) |
| 49 | expmul | |- ( ( A e. CC /\ M e. NN0 /\ -u N e. NN0 ) -> ( A ^ ( M x. -u N ) ) = ( ( A ^ M ) ^ -u N ) ) |
|
| 50 | 46 40 48 49 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. NN0 /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ ( M x. -u N ) ) = ( ( A ^ M ) ^ -u N ) ) |
| 51 | 45 50 | eqtr3d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. NN0 /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u ( M x. N ) ) = ( ( A ^ M ) ^ -u N ) ) |
| 52 | 51 | oveq2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. NN0 /\ ( N e. RR /\ -u N e. NN ) ) -> ( 1 / ( A ^ -u ( M x. N ) ) ) = ( 1 / ( ( A ^ M ) ^ -u N ) ) ) |
| 53 | 41 43 | mulcld | |- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. NN0 /\ ( N e. RR /\ -u N e. NN ) ) -> ( M x. N ) e. CC ) |
| 54 | 40 48 | nn0mulcld | |- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. NN0 /\ ( N e. RR /\ -u N e. NN ) ) -> ( M x. -u N ) e. NN0 ) |
| 55 | 44 54 | eqeltrrd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. NN0 /\ ( N e. RR /\ -u N e. NN ) ) -> -u ( M x. N ) e. NN0 ) |
| 56 | 46 53 55 32 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. NN0 /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ ( M x. N ) ) = ( 1 / ( A ^ -u ( M x. N ) ) ) ) |
| 57 | expcl | |- ( ( A e. CC /\ M e. NN0 ) -> ( A ^ M ) e. CC ) |
|
| 58 | 46 40 57 | syl2anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. NN0 /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ M ) e. CC ) |
| 59 | expneg2 | |- ( ( ( A ^ M ) e. CC /\ N e. CC /\ -u N e. NN0 ) -> ( ( A ^ M ) ^ N ) = ( 1 / ( ( A ^ M ) ^ -u N ) ) ) |
|
| 60 | 58 43 48 59 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. NN0 /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( A ^ M ) ^ N ) = ( 1 / ( ( A ^ M ) ^ -u N ) ) ) |
| 61 | 52 56 60 | 3eqtr4d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. NN0 /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ ( M x. N ) ) = ( ( A ^ M ) ^ N ) ) |
| 62 | 61 | 3expia | |- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. NN0 ) -> ( ( N e. RR /\ -u N e. NN ) -> ( A ^ ( M x. N ) ) = ( ( A ^ M ) ^ N ) ) ) |
| 63 | simp1l | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> A e. CC ) |
|
| 64 | simp2l | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> M e. RR ) |
|
| 65 | 64 | recnd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> M e. CC ) |
| 66 | simp2r | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u M e. NN ) |
|
| 67 | 66 | nnnn0d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u M e. NN0 ) |
| 68 | 63 65 67 34 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ M ) = ( 1 / ( A ^ -u M ) ) ) |
| 69 | 68 | oveq1d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( A ^ M ) ^ N ) = ( ( 1 / ( A ^ -u M ) ) ^ N ) ) |
| 70 | 63 67 19 | syl2anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u M ) e. CC ) |
| 71 | simp1r | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> A =/= 0 ) |
|
| 72 | 66 | nnzd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u M e. ZZ ) |
| 73 | 63 71 72 23 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u M ) =/= 0 ) |
| 74 | 70 73 | reccld | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( 1 / ( A ^ -u M ) ) e. CC ) |
| 75 | simp3l | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> N e. RR ) |
|
| 76 | 75 | recnd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> N e. CC ) |
| 77 | simp3r | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. NN ) |
|
| 78 | 77 | nnnn0d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. NN0 ) |
| 79 | expneg2 | |- ( ( ( 1 / ( A ^ -u M ) ) e. CC /\ N e. CC /\ -u N e. NN0 ) -> ( ( 1 / ( A ^ -u M ) ) ^ N ) = ( 1 / ( ( 1 / ( A ^ -u M ) ) ^ -u N ) ) ) |
|
| 80 | 74 76 78 79 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( 1 / ( A ^ -u M ) ) ^ N ) = ( 1 / ( ( 1 / ( A ^ -u M ) ) ^ -u N ) ) ) |
| 81 | 77 | nnzd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. ZZ ) |
| 82 | exprec | |- ( ( ( A ^ -u M ) e. CC /\ ( A ^ -u M ) =/= 0 /\ -u N e. ZZ ) -> ( ( 1 / ( A ^ -u M ) ) ^ -u N ) = ( 1 / ( ( A ^ -u M ) ^ -u N ) ) ) |
|
| 83 | 70 73 81 82 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( 1 / ( A ^ -u M ) ) ^ -u N ) = ( 1 / ( ( A ^ -u M ) ^ -u N ) ) ) |
| 84 | 83 | oveq2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( 1 / ( ( 1 / ( A ^ -u M ) ) ^ -u N ) ) = ( 1 / ( 1 / ( ( A ^ -u M ) ^ -u N ) ) ) ) |
| 85 | expcl | |- ( ( ( A ^ -u M ) e. CC /\ -u N e. NN0 ) -> ( ( A ^ -u M ) ^ -u N ) e. CC ) |
|
| 86 | 70 78 85 | syl2anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( A ^ -u M ) ^ -u N ) e. CC ) |
| 87 | expne0i | |- ( ( ( A ^ -u M ) e. CC /\ ( A ^ -u M ) =/= 0 /\ -u N e. ZZ ) -> ( ( A ^ -u M ) ^ -u N ) =/= 0 ) |
|
| 88 | 70 73 81 87 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( A ^ -u M ) ^ -u N ) =/= 0 ) |
| 89 | 86 88 | recrecd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( 1 / ( 1 / ( ( A ^ -u M ) ^ -u N ) ) ) = ( ( A ^ -u M ) ^ -u N ) ) |
| 90 | expmul | |- ( ( A e. CC /\ -u M e. NN0 /\ -u N e. NN0 ) -> ( A ^ ( -u M x. -u N ) ) = ( ( A ^ -u M ) ^ -u N ) ) |
|
| 91 | 63 67 78 90 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ ( -u M x. -u N ) ) = ( ( A ^ -u M ) ^ -u N ) ) |
| 92 | 65 76 | mul2negd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u M x. -u N ) = ( M x. N ) ) |
| 93 | 92 | oveq2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ ( -u M x. -u N ) ) = ( A ^ ( M x. N ) ) ) |
| 94 | 91 93 | eqtr3d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( A ^ -u M ) ^ -u N ) = ( A ^ ( M x. N ) ) ) |
| 95 | 84 89 94 | 3eqtrd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( 1 / ( ( 1 / ( A ^ -u M ) ) ^ -u N ) ) = ( A ^ ( M x. N ) ) ) |
| 96 | 69 80 95 | 3eqtrrd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ ( M x. N ) ) = ( ( A ^ M ) ^ N ) ) |
| 97 | 96 | 3expia | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) ) -> ( ( N e. RR /\ -u N e. NN ) -> ( A ^ ( M x. N ) ) = ( ( A ^ M ) ^ N ) ) ) |
| 98 | 62 97 | jaodan | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. NN0 \/ ( M e. RR /\ -u M e. NN ) ) ) -> ( ( N e. RR /\ -u N e. NN ) -> ( A ^ ( M x. N ) ) = ( ( A ^ M ) ^ N ) ) ) |
| 99 | 39 98 | jaod | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. NN0 \/ ( M e. RR /\ -u M e. NN ) ) ) -> ( ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ ( M x. N ) ) = ( ( A ^ M ) ^ N ) ) ) |
| 100 | 2 99 | sylan2b | |- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. ZZ ) -> ( ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ ( M x. N ) ) = ( ( A ^ M ) ^ N ) ) ) |
| 101 | 1 100 | biimtrid | |- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. ZZ ) -> ( N e. ZZ -> ( A ^ ( M x. N ) ) = ( ( A ^ M ) ^ N ) ) ) |
| 102 | 101 | impr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( A ^ ( M x. N ) ) = ( ( A ^ M ) ^ N ) ) |