This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ipassi . Show the inner product associative law for rational numbers. (Contributed by NM, 27-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip1i.1 | |- X = ( BaseSet ` U ) |
|
| ip1i.2 | |- G = ( +v ` U ) |
||
| ip1i.4 | |- S = ( .sOLD ` U ) |
||
| ip1i.7 | |- P = ( .iOLD ` U ) |
||
| ip1i.9 | |- U e. CPreHilOLD |
||
| ipasslem1.b | |- B e. X |
||
| Assertion | ipasslem5 | |- ( ( C e. QQ /\ A e. X ) -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip1i.1 | |- X = ( BaseSet ` U ) |
|
| 2 | ip1i.2 | |- G = ( +v ` U ) |
|
| 3 | ip1i.4 | |- S = ( .sOLD ` U ) |
|
| 4 | ip1i.7 | |- P = ( .iOLD ` U ) |
|
| 5 | ip1i.9 | |- U e. CPreHilOLD |
|
| 6 | ipasslem1.b | |- B e. X |
|
| 7 | elq | |- ( C e. QQ <-> E. j e. ZZ E. k e. NN C = ( j / k ) ) |
|
| 8 | zcn | |- ( j e. ZZ -> j e. CC ) |
|
| 9 | nnrecre | |- ( k e. NN -> ( 1 / k ) e. RR ) |
|
| 10 | 9 | recnd | |- ( k e. NN -> ( 1 / k ) e. CC ) |
| 11 | 5 | phnvi | |- U e. NrmCVec |
| 12 | 1 4 | dipcl | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) e. CC ) |
| 13 | 11 6 12 | mp3an13 | |- ( A e. X -> ( A P B ) e. CC ) |
| 14 | mulass | |- ( ( j e. CC /\ ( 1 / k ) e. CC /\ ( A P B ) e. CC ) -> ( ( j x. ( 1 / k ) ) x. ( A P B ) ) = ( j x. ( ( 1 / k ) x. ( A P B ) ) ) ) |
|
| 15 | 8 10 13 14 | syl3an | |- ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( j x. ( 1 / k ) ) x. ( A P B ) ) = ( j x. ( ( 1 / k ) x. ( A P B ) ) ) ) |
| 16 | 8 | adantr | |- ( ( j e. ZZ /\ k e. NN ) -> j e. CC ) |
| 17 | nncn | |- ( k e. NN -> k e. CC ) |
|
| 18 | 17 | adantl | |- ( ( j e. ZZ /\ k e. NN ) -> k e. CC ) |
| 19 | nnne0 | |- ( k e. NN -> k =/= 0 ) |
|
| 20 | 19 | adantl | |- ( ( j e. ZZ /\ k e. NN ) -> k =/= 0 ) |
| 21 | 16 18 20 | divrecd | |- ( ( j e. ZZ /\ k e. NN ) -> ( j / k ) = ( j x. ( 1 / k ) ) ) |
| 22 | 21 | 3adant3 | |- ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( j / k ) = ( j x. ( 1 / k ) ) ) |
| 23 | 22 | oveq1d | |- ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( j / k ) x. ( A P B ) ) = ( ( j x. ( 1 / k ) ) x. ( A P B ) ) ) |
| 24 | 22 | oveq1d | |- ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( j / k ) S A ) = ( ( j x. ( 1 / k ) ) S A ) ) |
| 25 | id | |- ( A e. X -> A e. X ) |
|
| 26 | 1 3 | nvsass | |- ( ( U e. NrmCVec /\ ( j e. CC /\ ( 1 / k ) e. CC /\ A e. X ) ) -> ( ( j x. ( 1 / k ) ) S A ) = ( j S ( ( 1 / k ) S A ) ) ) |
| 27 | 11 26 | mpan | |- ( ( j e. CC /\ ( 1 / k ) e. CC /\ A e. X ) -> ( ( j x. ( 1 / k ) ) S A ) = ( j S ( ( 1 / k ) S A ) ) ) |
| 28 | 8 10 25 27 | syl3an | |- ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( j x. ( 1 / k ) ) S A ) = ( j S ( ( 1 / k ) S A ) ) ) |
| 29 | 24 28 | eqtrd | |- ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( j / k ) S A ) = ( j S ( ( 1 / k ) S A ) ) ) |
| 30 | 29 | oveq1d | |- ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( ( j / k ) S A ) P B ) = ( ( j S ( ( 1 / k ) S A ) ) P B ) ) |
| 31 | 1 3 | nvscl | |- ( ( U e. NrmCVec /\ ( 1 / k ) e. CC /\ A e. X ) -> ( ( 1 / k ) S A ) e. X ) |
| 32 | 11 31 | mp3an1 | |- ( ( ( 1 / k ) e. CC /\ A e. X ) -> ( ( 1 / k ) S A ) e. X ) |
| 33 | 10 32 | sylan | |- ( ( k e. NN /\ A e. X ) -> ( ( 1 / k ) S A ) e. X ) |
| 34 | 1 2 3 4 5 6 | ipasslem3 | |- ( ( j e. ZZ /\ ( ( 1 / k ) S A ) e. X ) -> ( ( j S ( ( 1 / k ) S A ) ) P B ) = ( j x. ( ( ( 1 / k ) S A ) P B ) ) ) |
| 35 | 33 34 | sylan2 | |- ( ( j e. ZZ /\ ( k e. NN /\ A e. X ) ) -> ( ( j S ( ( 1 / k ) S A ) ) P B ) = ( j x. ( ( ( 1 / k ) S A ) P B ) ) ) |
| 36 | 35 | 3impb | |- ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( j S ( ( 1 / k ) S A ) ) P B ) = ( j x. ( ( ( 1 / k ) S A ) P B ) ) ) |
| 37 | 1 2 3 4 5 6 | ipasslem4 | |- ( ( k e. NN /\ A e. X ) -> ( ( ( 1 / k ) S A ) P B ) = ( ( 1 / k ) x. ( A P B ) ) ) |
| 38 | 37 | 3adant1 | |- ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( ( 1 / k ) S A ) P B ) = ( ( 1 / k ) x. ( A P B ) ) ) |
| 39 | 38 | oveq2d | |- ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( j x. ( ( ( 1 / k ) S A ) P B ) ) = ( j x. ( ( 1 / k ) x. ( A P B ) ) ) ) |
| 40 | 30 36 39 | 3eqtrd | |- ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( ( j / k ) S A ) P B ) = ( j x. ( ( 1 / k ) x. ( A P B ) ) ) ) |
| 41 | 15 23 40 | 3eqtr4rd | |- ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( ( ( j / k ) S A ) P B ) = ( ( j / k ) x. ( A P B ) ) ) |
| 42 | oveq1 | |- ( C = ( j / k ) -> ( C S A ) = ( ( j / k ) S A ) ) |
|
| 43 | 42 | oveq1d | |- ( C = ( j / k ) -> ( ( C S A ) P B ) = ( ( ( j / k ) S A ) P B ) ) |
| 44 | oveq1 | |- ( C = ( j / k ) -> ( C x. ( A P B ) ) = ( ( j / k ) x. ( A P B ) ) ) |
|
| 45 | 43 44 | eqeq12d | |- ( C = ( j / k ) -> ( ( ( C S A ) P B ) = ( C x. ( A P B ) ) <-> ( ( ( j / k ) S A ) P B ) = ( ( j / k ) x. ( A P B ) ) ) ) |
| 46 | 41 45 | syl5ibrcom | |- ( ( j e. ZZ /\ k e. NN /\ A e. X ) -> ( C = ( j / k ) -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) ) |
| 47 | 46 | 3expia | |- ( ( j e. ZZ /\ k e. NN ) -> ( A e. X -> ( C = ( j / k ) -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) ) ) |
| 48 | 47 | com23 | |- ( ( j e. ZZ /\ k e. NN ) -> ( C = ( j / k ) -> ( A e. X -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) ) ) |
| 49 | 48 | rexlimivv | |- ( E. j e. ZZ E. k e. NN C = ( j / k ) -> ( A e. X -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) ) |
| 50 | 7 49 | sylbi | |- ( C e. QQ -> ( A e. X -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) ) |
| 51 | 50 | imp | |- ( ( C e. QQ /\ A e. X ) -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) |