This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ipassi . Show that ( ( w S A ) P B ) - ( w x. ( A P B ) ) is continuous on RR . (Contributed by NM, 23-Aug-2007) (Revised by Mario Carneiro, 6-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip1i.1 | |- X = ( BaseSet ` U ) |
|
| ip1i.2 | |- G = ( +v ` U ) |
||
| ip1i.4 | |- S = ( .sOLD ` U ) |
||
| ip1i.7 | |- P = ( .iOLD ` U ) |
||
| ip1i.9 | |- U e. CPreHilOLD |
||
| ipasslem7.a | |- A e. X |
||
| ipasslem7.b | |- B e. X |
||
| ipasslem7.f | |- F = ( w e. RR |-> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) ) |
||
| ipasslem7.j | |- J = ( topGen ` ran (,) ) |
||
| ipasslem7.k | |- K = ( TopOpen ` CCfld ) |
||
| Assertion | ipasslem7 | |- F e. ( J Cn K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip1i.1 | |- X = ( BaseSet ` U ) |
|
| 2 | ip1i.2 | |- G = ( +v ` U ) |
|
| 3 | ip1i.4 | |- S = ( .sOLD ` U ) |
|
| 4 | ip1i.7 | |- P = ( .iOLD ` U ) |
|
| 5 | ip1i.9 | |- U e. CPreHilOLD |
|
| 6 | ipasslem7.a | |- A e. X |
|
| 7 | ipasslem7.b | |- B e. X |
|
| 8 | ipasslem7.f | |- F = ( w e. RR |-> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) ) |
|
| 9 | ipasslem7.j | |- J = ( topGen ` ran (,) ) |
|
| 10 | ipasslem7.k | |- K = ( TopOpen ` CCfld ) |
|
| 11 | 10 | tgioo2 | |- ( topGen ` ran (,) ) = ( K |`t RR ) |
| 12 | 9 11 | eqtri | |- J = ( K |`t RR ) |
| 13 | 10 | cnfldtopon | |- K e. ( TopOn ` CC ) |
| 14 | 13 | a1i | |- ( T. -> K e. ( TopOn ` CC ) ) |
| 15 | ax-resscn | |- RR C_ CC |
|
| 16 | 15 | a1i | |- ( T. -> RR C_ CC ) |
| 17 | 14 | cnmptid | |- ( T. -> ( w e. CC |-> w ) e. ( K Cn K ) ) |
| 18 | 5 | phnvi | |- U e. NrmCVec |
| 19 | eqid | |- ( IndMet ` U ) = ( IndMet ` U ) |
|
| 20 | 1 19 | imsxmet | |- ( U e. NrmCVec -> ( IndMet ` U ) e. ( *Met ` X ) ) |
| 21 | 18 20 | ax-mp | |- ( IndMet ` U ) e. ( *Met ` X ) |
| 22 | eqid | |- ( MetOpen ` ( IndMet ` U ) ) = ( MetOpen ` ( IndMet ` U ) ) |
|
| 23 | 22 | mopntopon | |- ( ( IndMet ` U ) e. ( *Met ` X ) -> ( MetOpen ` ( IndMet ` U ) ) e. ( TopOn ` X ) ) |
| 24 | 21 23 | mp1i | |- ( T. -> ( MetOpen ` ( IndMet ` U ) ) e. ( TopOn ` X ) ) |
| 25 | 6 | a1i | |- ( T. -> A e. X ) |
| 26 | 14 24 25 | cnmptc | |- ( T. -> ( w e. CC |-> A ) e. ( K Cn ( MetOpen ` ( IndMet ` U ) ) ) ) |
| 27 | 19 22 3 10 | smcn | |- ( U e. NrmCVec -> S e. ( ( K tX ( MetOpen ` ( IndMet ` U ) ) ) Cn ( MetOpen ` ( IndMet ` U ) ) ) ) |
| 28 | 18 27 | mp1i | |- ( T. -> S e. ( ( K tX ( MetOpen ` ( IndMet ` U ) ) ) Cn ( MetOpen ` ( IndMet ` U ) ) ) ) |
| 29 | 14 17 26 28 | cnmpt12f | |- ( T. -> ( w e. CC |-> ( w S A ) ) e. ( K Cn ( MetOpen ` ( IndMet ` U ) ) ) ) |
| 30 | 7 | a1i | |- ( T. -> B e. X ) |
| 31 | 14 24 30 | cnmptc | |- ( T. -> ( w e. CC |-> B ) e. ( K Cn ( MetOpen ` ( IndMet ` U ) ) ) ) |
| 32 | 4 19 22 10 | dipcn | |- ( U e. NrmCVec -> P e. ( ( ( MetOpen ` ( IndMet ` U ) ) tX ( MetOpen ` ( IndMet ` U ) ) ) Cn K ) ) |
| 33 | 18 32 | mp1i | |- ( T. -> P e. ( ( ( MetOpen ` ( IndMet ` U ) ) tX ( MetOpen ` ( IndMet ` U ) ) ) Cn K ) ) |
| 34 | 14 29 31 33 | cnmpt12f | |- ( T. -> ( w e. CC |-> ( ( w S A ) P B ) ) e. ( K Cn K ) ) |
| 35 | 1 4 | dipcl | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) e. CC ) |
| 36 | 18 6 7 35 | mp3an | |- ( A P B ) e. CC |
| 37 | 36 | a1i | |- ( T. -> ( A P B ) e. CC ) |
| 38 | 14 14 37 | cnmptc | |- ( T. -> ( w e. CC |-> ( A P B ) ) e. ( K Cn K ) ) |
| 39 | 10 | mulcn | |- x. e. ( ( K tX K ) Cn K ) |
| 40 | 39 | a1i | |- ( T. -> x. e. ( ( K tX K ) Cn K ) ) |
| 41 | 14 17 38 40 | cnmpt12f | |- ( T. -> ( w e. CC |-> ( w x. ( A P B ) ) ) e. ( K Cn K ) ) |
| 42 | 10 | subcn | |- - e. ( ( K tX K ) Cn K ) |
| 43 | 42 | a1i | |- ( T. -> - e. ( ( K tX K ) Cn K ) ) |
| 44 | 14 34 41 43 | cnmpt12f | |- ( T. -> ( w e. CC |-> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) ) e. ( K Cn K ) ) |
| 45 | 12 14 16 44 | cnmpt1res | |- ( T. -> ( w e. RR |-> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) ) e. ( J Cn K ) ) |
| 46 | 45 | mptru | |- ( w e. RR |-> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) ) e. ( J Cn K ) |
| 47 | 8 46 | eqeltri | |- F e. ( J Cn K ) |