This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ipassi . Conclude from ipasslem8 the inner product associative law for real numbers. (Contributed by NM, 24-Aug-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip1i.1 | |- X = ( BaseSet ` U ) |
|
| ip1i.2 | |- G = ( +v ` U ) |
||
| ip1i.4 | |- S = ( .sOLD ` U ) |
||
| ip1i.7 | |- P = ( .iOLD ` U ) |
||
| ip1i.9 | |- U e. CPreHilOLD |
||
| ipasslem9.a | |- A e. X |
||
| ipasslem9.b | |- B e. X |
||
| Assertion | ipasslem9 | |- ( C e. RR -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip1i.1 | |- X = ( BaseSet ` U ) |
|
| 2 | ip1i.2 | |- G = ( +v ` U ) |
|
| 3 | ip1i.4 | |- S = ( .sOLD ` U ) |
|
| 4 | ip1i.7 | |- P = ( .iOLD ` U ) |
|
| 5 | ip1i.9 | |- U e. CPreHilOLD |
|
| 6 | ipasslem9.a | |- A e. X |
|
| 7 | ipasslem9.b | |- B e. X |
|
| 8 | oveq1 | |- ( w = C -> ( w S A ) = ( C S A ) ) |
|
| 9 | 8 | oveq1d | |- ( w = C -> ( ( w S A ) P B ) = ( ( C S A ) P B ) ) |
| 10 | oveq1 | |- ( w = C -> ( w x. ( A P B ) ) = ( C x. ( A P B ) ) ) |
|
| 11 | 9 10 | oveq12d | |- ( w = C -> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) = ( ( ( C S A ) P B ) - ( C x. ( A P B ) ) ) ) |
| 12 | eqid | |- ( w e. RR |-> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) ) = ( w e. RR |-> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) ) |
|
| 13 | ovex | |- ( ( ( C S A ) P B ) - ( C x. ( A P B ) ) ) e. _V |
|
| 14 | 11 12 13 | fvmpt | |- ( C e. RR -> ( ( w e. RR |-> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) ) ` C ) = ( ( ( C S A ) P B ) - ( C x. ( A P B ) ) ) ) |
| 15 | 1 2 3 4 5 6 7 12 | ipasslem8 | |- ( w e. RR |-> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) ) : RR --> { 0 } |
| 16 | fvconst | |- ( ( ( w e. RR |-> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) ) : RR --> { 0 } /\ C e. RR ) -> ( ( w e. RR |-> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) ) ` C ) = 0 ) |
|
| 17 | 15 16 | mpan | |- ( C e. RR -> ( ( w e. RR |-> ( ( ( w S A ) P B ) - ( w x. ( A P B ) ) ) ) ` C ) = 0 ) |
| 18 | 14 17 | eqtr3d | |- ( C e. RR -> ( ( ( C S A ) P B ) - ( C x. ( A P B ) ) ) = 0 ) |
| 19 | recn | |- ( C e. RR -> C e. CC ) |
|
| 20 | 5 | phnvi | |- U e. NrmCVec |
| 21 | 1 3 | nvscl | |- ( ( U e. NrmCVec /\ C e. CC /\ A e. X ) -> ( C S A ) e. X ) |
| 22 | 20 6 21 | mp3an13 | |- ( C e. CC -> ( C S A ) e. X ) |
| 23 | 1 4 | dipcl | |- ( ( U e. NrmCVec /\ ( C S A ) e. X /\ B e. X ) -> ( ( C S A ) P B ) e. CC ) |
| 24 | 20 7 23 | mp3an13 | |- ( ( C S A ) e. X -> ( ( C S A ) P B ) e. CC ) |
| 25 | 22 24 | syl | |- ( C e. CC -> ( ( C S A ) P B ) e. CC ) |
| 26 | 1 4 | dipcl | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) e. CC ) |
| 27 | 20 6 7 26 | mp3an | |- ( A P B ) e. CC |
| 28 | mulcl | |- ( ( C e. CC /\ ( A P B ) e. CC ) -> ( C x. ( A P B ) ) e. CC ) |
|
| 29 | 27 28 | mpan2 | |- ( C e. CC -> ( C x. ( A P B ) ) e. CC ) |
| 30 | 25 29 | subeq0ad | |- ( C e. CC -> ( ( ( ( C S A ) P B ) - ( C x. ( A P B ) ) ) = 0 <-> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) ) |
| 31 | 19 30 | syl | |- ( C e. RR -> ( ( ( ( C S A ) P B ) - ( C x. ( A P B ) ) ) = 0 <-> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) ) |
| 32 | 18 31 | mpbid | |- ( C e. RR -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) |