This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of specifying that a function is constant on a subdomain. (Contributed by NM, 8-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funconstss | |- ( ( Fun F /\ A C_ dom F ) -> ( A. x e. A ( F ` x ) = B <-> A C_ ( `' F " { B } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funimass4 | |- ( ( Fun F /\ A C_ dom F ) -> ( ( F " A ) C_ { B } <-> A. x e. A ( F ` x ) e. { B } ) ) |
|
| 2 | fvex | |- ( F ` x ) e. _V |
|
| 3 | 2 | elsn | |- ( ( F ` x ) e. { B } <-> ( F ` x ) = B ) |
| 4 | 3 | ralbii | |- ( A. x e. A ( F ` x ) e. { B } <-> A. x e. A ( F ` x ) = B ) |
| 5 | 1 4 | bitr2di | |- ( ( Fun F /\ A C_ dom F ) -> ( A. x e. A ( F ` x ) = B <-> ( F " A ) C_ { B } ) ) |
| 6 | funimass3 | |- ( ( Fun F /\ A C_ dom F ) -> ( ( F " A ) C_ { B } <-> A C_ ( `' F " { B } ) ) ) |
|
| 7 | 5 6 | bitrd | |- ( ( Fun F /\ A C_ dom F ) -> ( A. x e. A ( F ` x ) = B <-> A C_ ( `' F " { B } ) ) ) |