This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a continuous mapping to a T_1 space is constant on a dense subset, it is constant on the entire space. Note that ( ( clsJ )A ) = X means " A is dense in X " and A C_ (`' F " { P } ) means " F is constant on A ` " (see funconstss ). (Contributed by NM, 15-Mar-2007) (Proof shortened by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dnsconst.1 | |- X = U. J |
|
| dnsconst.2 | |- Y = U. K |
||
| Assertion | dnsconst | |- ( ( ( K e. Fre /\ F e. ( J Cn K ) ) /\ ( P e. Y /\ A C_ ( `' F " { P } ) /\ ( ( cls ` J ) ` A ) = X ) ) -> F : X --> { P } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dnsconst.1 | |- X = U. J |
|
| 2 | dnsconst.2 | |- Y = U. K |
|
| 3 | simplr | |- ( ( ( K e. Fre /\ F e. ( J Cn K ) ) /\ ( P e. Y /\ A C_ ( `' F " { P } ) /\ ( ( cls ` J ) ` A ) = X ) ) -> F e. ( J Cn K ) ) |
|
| 4 | 1 2 | cnf | |- ( F e. ( J Cn K ) -> F : X --> Y ) |
| 5 | ffn | |- ( F : X --> Y -> F Fn X ) |
|
| 6 | 3 4 5 | 3syl | |- ( ( ( K e. Fre /\ F e. ( J Cn K ) ) /\ ( P e. Y /\ A C_ ( `' F " { P } ) /\ ( ( cls ` J ) ` A ) = X ) ) -> F Fn X ) |
| 7 | simpr3 | |- ( ( ( K e. Fre /\ F e. ( J Cn K ) ) /\ ( P e. Y /\ A C_ ( `' F " { P } ) /\ ( ( cls ` J ) ` A ) = X ) ) -> ( ( cls ` J ) ` A ) = X ) |
|
| 8 | simpll | |- ( ( ( K e. Fre /\ F e. ( J Cn K ) ) /\ ( P e. Y /\ A C_ ( `' F " { P } ) /\ ( ( cls ` J ) ` A ) = X ) ) -> K e. Fre ) |
|
| 9 | simpr1 | |- ( ( ( K e. Fre /\ F e. ( J Cn K ) ) /\ ( P e. Y /\ A C_ ( `' F " { P } ) /\ ( ( cls ` J ) ` A ) = X ) ) -> P e. Y ) |
|
| 10 | 2 | t1sncld | |- ( ( K e. Fre /\ P e. Y ) -> { P } e. ( Clsd ` K ) ) |
| 11 | 8 9 10 | syl2anc | |- ( ( ( K e. Fre /\ F e. ( J Cn K ) ) /\ ( P e. Y /\ A C_ ( `' F " { P } ) /\ ( ( cls ` J ) ` A ) = X ) ) -> { P } e. ( Clsd ` K ) ) |
| 12 | cnclima | |- ( ( F e. ( J Cn K ) /\ { P } e. ( Clsd ` K ) ) -> ( `' F " { P } ) e. ( Clsd ` J ) ) |
|
| 13 | 3 11 12 | syl2anc | |- ( ( ( K e. Fre /\ F e. ( J Cn K ) ) /\ ( P e. Y /\ A C_ ( `' F " { P } ) /\ ( ( cls ` J ) ` A ) = X ) ) -> ( `' F " { P } ) e. ( Clsd ` J ) ) |
| 14 | simpr2 | |- ( ( ( K e. Fre /\ F e. ( J Cn K ) ) /\ ( P e. Y /\ A C_ ( `' F " { P } ) /\ ( ( cls ` J ) ` A ) = X ) ) -> A C_ ( `' F " { P } ) ) |
|
| 15 | 1 | clsss2 | |- ( ( ( `' F " { P } ) e. ( Clsd ` J ) /\ A C_ ( `' F " { P } ) ) -> ( ( cls ` J ) ` A ) C_ ( `' F " { P } ) ) |
| 16 | 13 14 15 | syl2anc | |- ( ( ( K e. Fre /\ F e. ( J Cn K ) ) /\ ( P e. Y /\ A C_ ( `' F " { P } ) /\ ( ( cls ` J ) ` A ) = X ) ) -> ( ( cls ` J ) ` A ) C_ ( `' F " { P } ) ) |
| 17 | 7 16 | eqsstrrd | |- ( ( ( K e. Fre /\ F e. ( J Cn K ) ) /\ ( P e. Y /\ A C_ ( `' F " { P } ) /\ ( ( cls ` J ) ` A ) = X ) ) -> X C_ ( `' F " { P } ) ) |
| 18 | fconst3 | |- ( F : X --> { P } <-> ( F Fn X /\ X C_ ( `' F " { P } ) ) ) |
|
| 19 | 6 17 18 | sylanbrc | |- ( ( ( K e. Fre /\ F e. ( J Cn K ) ) /\ ( P e. Y /\ A C_ ( `' F " { P } ) /\ ( ( cls ` J ) ` A ) = X ) ) -> F : X --> { P } ) |