This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: QQ is dense in the standard topology on RR . (Contributed by NM, 1-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qdensere | |- ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) = RR |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retop | |- ( topGen ` ran (,) ) e. Top |
|
| 2 | qssre | |- QQ C_ RR |
|
| 3 | uniretop | |- RR = U. ( topGen ` ran (,) ) |
|
| 4 | 3 | clsss3 | |- ( ( ( topGen ` ran (,) ) e. Top /\ QQ C_ RR ) -> ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) C_ RR ) |
| 5 | 1 2 4 | mp2an | |- ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) C_ RR |
| 6 | ioof | |- (,) : ( RR* X. RR* ) --> ~P RR |
|
| 7 | ffn | |- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
|
| 8 | ovelrn | |- ( (,) Fn ( RR* X. RR* ) -> ( y e. ran (,) <-> E. z e. RR* E. w e. RR* y = ( z (,) w ) ) ) |
|
| 9 | 6 7 8 | mp2b | |- ( y e. ran (,) <-> E. z e. RR* E. w e. RR* y = ( z (,) w ) ) |
| 10 | elioo3g | |- ( x e. ( z (,) w ) <-> ( ( z e. RR* /\ w e. RR* /\ x e. RR* ) /\ ( z < x /\ x < w ) ) ) |
|
| 11 | 10 | simplbi | |- ( x e. ( z (,) w ) -> ( z e. RR* /\ w e. RR* /\ x e. RR* ) ) |
| 12 | 11 | simp1d | |- ( x e. ( z (,) w ) -> z e. RR* ) |
| 13 | 12 | ad2antrr | |- ( ( ( x e. ( z (,) w ) /\ y e. QQ ) /\ ( z < y /\ y < w ) ) -> z e. RR* ) |
| 14 | 11 | simp2d | |- ( x e. ( z (,) w ) -> w e. RR* ) |
| 15 | 14 | ad2antrr | |- ( ( ( x e. ( z (,) w ) /\ y e. QQ ) /\ ( z < y /\ y < w ) ) -> w e. RR* ) |
| 16 | qre | |- ( y e. QQ -> y e. RR ) |
|
| 17 | 16 | ad2antlr | |- ( ( ( x e. ( z (,) w ) /\ y e. QQ ) /\ ( z < y /\ y < w ) ) -> y e. RR ) |
| 18 | 17 | rexrd | |- ( ( ( x e. ( z (,) w ) /\ y e. QQ ) /\ ( z < y /\ y < w ) ) -> y e. RR* ) |
| 19 | 13 15 18 | 3jca | |- ( ( ( x e. ( z (,) w ) /\ y e. QQ ) /\ ( z < y /\ y < w ) ) -> ( z e. RR* /\ w e. RR* /\ y e. RR* ) ) |
| 20 | simpr | |- ( ( ( x e. ( z (,) w ) /\ y e. QQ ) /\ ( z < y /\ y < w ) ) -> ( z < y /\ y < w ) ) |
|
| 21 | elioo3g | |- ( y e. ( z (,) w ) <-> ( ( z e. RR* /\ w e. RR* /\ y e. RR* ) /\ ( z < y /\ y < w ) ) ) |
|
| 22 | 19 20 21 | sylanbrc | |- ( ( ( x e. ( z (,) w ) /\ y e. QQ ) /\ ( z < y /\ y < w ) ) -> y e. ( z (,) w ) ) |
| 23 | simplr | |- ( ( ( x e. ( z (,) w ) /\ y e. QQ ) /\ ( z < y /\ y < w ) ) -> y e. QQ ) |
|
| 24 | inelcm | |- ( ( y e. ( z (,) w ) /\ y e. QQ ) -> ( ( z (,) w ) i^i QQ ) =/= (/) ) |
|
| 25 | 22 23 24 | syl2anc | |- ( ( ( x e. ( z (,) w ) /\ y e. QQ ) /\ ( z < y /\ y < w ) ) -> ( ( z (,) w ) i^i QQ ) =/= (/) ) |
| 26 | 11 | simp3d | |- ( x e. ( z (,) w ) -> x e. RR* ) |
| 27 | eliooord | |- ( x e. ( z (,) w ) -> ( z < x /\ x < w ) ) |
|
| 28 | 27 | simpld | |- ( x e. ( z (,) w ) -> z < x ) |
| 29 | 27 | simprd | |- ( x e. ( z (,) w ) -> x < w ) |
| 30 | 12 26 14 28 29 | xrlttrd | |- ( x e. ( z (,) w ) -> z < w ) |
| 31 | qbtwnxr | |- ( ( z e. RR* /\ w e. RR* /\ z < w ) -> E. y e. QQ ( z < y /\ y < w ) ) |
|
| 32 | 12 14 30 31 | syl3anc | |- ( x e. ( z (,) w ) -> E. y e. QQ ( z < y /\ y < w ) ) |
| 33 | 25 32 | r19.29a | |- ( x e. ( z (,) w ) -> ( ( z (,) w ) i^i QQ ) =/= (/) ) |
| 34 | 33 | a1i | |- ( y = ( z (,) w ) -> ( x e. ( z (,) w ) -> ( ( z (,) w ) i^i QQ ) =/= (/) ) ) |
| 35 | eleq2 | |- ( y = ( z (,) w ) -> ( x e. y <-> x e. ( z (,) w ) ) ) |
|
| 36 | ineq1 | |- ( y = ( z (,) w ) -> ( y i^i QQ ) = ( ( z (,) w ) i^i QQ ) ) |
|
| 37 | 36 | neeq1d | |- ( y = ( z (,) w ) -> ( ( y i^i QQ ) =/= (/) <-> ( ( z (,) w ) i^i QQ ) =/= (/) ) ) |
| 38 | 34 35 37 | 3imtr4d | |- ( y = ( z (,) w ) -> ( x e. y -> ( y i^i QQ ) =/= (/) ) ) |
| 39 | 38 | rexlimivw | |- ( E. w e. RR* y = ( z (,) w ) -> ( x e. y -> ( y i^i QQ ) =/= (/) ) ) |
| 40 | 39 | rexlimivw | |- ( E. z e. RR* E. w e. RR* y = ( z (,) w ) -> ( x e. y -> ( y i^i QQ ) =/= (/) ) ) |
| 41 | 9 40 | sylbi | |- ( y e. ran (,) -> ( x e. y -> ( y i^i QQ ) =/= (/) ) ) |
| 42 | 41 | rgen | |- A. y e. ran (,) ( x e. y -> ( y i^i QQ ) =/= (/) ) |
| 43 | eqidd | |- ( x e. RR -> ( topGen ` ran (,) ) = ( topGen ` ran (,) ) ) |
|
| 44 | 3 | a1i | |- ( x e. RR -> RR = U. ( topGen ` ran (,) ) ) |
| 45 | retopbas | |- ran (,) e. TopBases |
|
| 46 | 45 | a1i | |- ( x e. RR -> ran (,) e. TopBases ) |
| 47 | 2 | a1i | |- ( x e. RR -> QQ C_ RR ) |
| 48 | id | |- ( x e. RR -> x e. RR ) |
|
| 49 | 43 44 46 47 48 | elcls3 | |- ( x e. RR -> ( x e. ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) <-> A. y e. ran (,) ( x e. y -> ( y i^i QQ ) =/= (/) ) ) ) |
| 50 | 42 49 | mpbiri | |- ( x e. RR -> x e. ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) ) |
| 51 | 50 | ssriv | |- RR C_ ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) |
| 52 | 5 51 | eqssi | |- ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) = RR |