This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ipassi . Show the inner product associative law for positive integer reciprocals. (Contributed by NM, 27-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip1i.1 | |- X = ( BaseSet ` U ) |
|
| ip1i.2 | |- G = ( +v ` U ) |
||
| ip1i.4 | |- S = ( .sOLD ` U ) |
||
| ip1i.7 | |- P = ( .iOLD ` U ) |
||
| ip1i.9 | |- U e. CPreHilOLD |
||
| ipasslem1.b | |- B e. X |
||
| Assertion | ipasslem4 | |- ( ( N e. NN /\ A e. X ) -> ( ( ( 1 / N ) S A ) P B ) = ( ( 1 / N ) x. ( A P B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip1i.1 | |- X = ( BaseSet ` U ) |
|
| 2 | ip1i.2 | |- G = ( +v ` U ) |
|
| 3 | ip1i.4 | |- S = ( .sOLD ` U ) |
|
| 4 | ip1i.7 | |- P = ( .iOLD ` U ) |
|
| 5 | ip1i.9 | |- U e. CPreHilOLD |
|
| 6 | ipasslem1.b | |- B e. X |
|
| 7 | nnrecre | |- ( N e. NN -> ( 1 / N ) e. RR ) |
|
| 8 | 7 | recnd | |- ( N e. NN -> ( 1 / N ) e. CC ) |
| 9 | 5 | phnvi | |- U e. NrmCVec |
| 10 | 1 3 | nvscl | |- ( ( U e. NrmCVec /\ ( 1 / N ) e. CC /\ A e. X ) -> ( ( 1 / N ) S A ) e. X ) |
| 11 | 9 10 | mp3an1 | |- ( ( ( 1 / N ) e. CC /\ A e. X ) -> ( ( 1 / N ) S A ) e. X ) |
| 12 | 8 11 | sylan | |- ( ( N e. NN /\ A e. X ) -> ( ( 1 / N ) S A ) e. X ) |
| 13 | 1 4 | dipcl | |- ( ( U e. NrmCVec /\ ( ( 1 / N ) S A ) e. X /\ B e. X ) -> ( ( ( 1 / N ) S A ) P B ) e. CC ) |
| 14 | 9 6 13 | mp3an13 | |- ( ( ( 1 / N ) S A ) e. X -> ( ( ( 1 / N ) S A ) P B ) e. CC ) |
| 15 | 12 14 | syl | |- ( ( N e. NN /\ A e. X ) -> ( ( ( 1 / N ) S A ) P B ) e. CC ) |
| 16 | 1 4 | dipcl | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) e. CC ) |
| 17 | 9 6 16 | mp3an13 | |- ( A e. X -> ( A P B ) e. CC ) |
| 18 | mulcl | |- ( ( ( 1 / N ) e. CC /\ ( A P B ) e. CC ) -> ( ( 1 / N ) x. ( A P B ) ) e. CC ) |
|
| 19 | 8 17 18 | syl2an | |- ( ( N e. NN /\ A e. X ) -> ( ( 1 / N ) x. ( A P B ) ) e. CC ) |
| 20 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 21 | 20 | adantr | |- ( ( N e. NN /\ A e. X ) -> N e. CC ) |
| 22 | nnne0 | |- ( N e. NN -> N =/= 0 ) |
|
| 23 | 22 | adantr | |- ( ( N e. NN /\ A e. X ) -> N =/= 0 ) |
| 24 | 20 22 | recidd | |- ( N e. NN -> ( N x. ( 1 / N ) ) = 1 ) |
| 25 | 24 | oveq1d | |- ( N e. NN -> ( ( N x. ( 1 / N ) ) x. ( A P B ) ) = ( 1 x. ( A P B ) ) ) |
| 26 | 17 | mullidd | |- ( A e. X -> ( 1 x. ( A P B ) ) = ( A P B ) ) |
| 27 | 25 26 | sylan9eq | |- ( ( N e. NN /\ A e. X ) -> ( ( N x. ( 1 / N ) ) x. ( A P B ) ) = ( A P B ) ) |
| 28 | 24 | oveq1d | |- ( N e. NN -> ( ( N x. ( 1 / N ) ) S A ) = ( 1 S A ) ) |
| 29 | 1 3 | nvsid | |- ( ( U e. NrmCVec /\ A e. X ) -> ( 1 S A ) = A ) |
| 30 | 9 29 | mpan | |- ( A e. X -> ( 1 S A ) = A ) |
| 31 | 28 30 | sylan9eq | |- ( ( N e. NN /\ A e. X ) -> ( ( N x. ( 1 / N ) ) S A ) = A ) |
| 32 | 8 | adantr | |- ( ( N e. NN /\ A e. X ) -> ( 1 / N ) e. CC ) |
| 33 | simpr | |- ( ( N e. NN /\ A e. X ) -> A e. X ) |
|
| 34 | 1 3 | nvsass | |- ( ( U e. NrmCVec /\ ( N e. CC /\ ( 1 / N ) e. CC /\ A e. X ) ) -> ( ( N x. ( 1 / N ) ) S A ) = ( N S ( ( 1 / N ) S A ) ) ) |
| 35 | 9 34 | mpan | |- ( ( N e. CC /\ ( 1 / N ) e. CC /\ A e. X ) -> ( ( N x. ( 1 / N ) ) S A ) = ( N S ( ( 1 / N ) S A ) ) ) |
| 36 | 21 32 33 35 | syl3anc | |- ( ( N e. NN /\ A e. X ) -> ( ( N x. ( 1 / N ) ) S A ) = ( N S ( ( 1 / N ) S A ) ) ) |
| 37 | 31 36 | eqtr3d | |- ( ( N e. NN /\ A e. X ) -> A = ( N S ( ( 1 / N ) S A ) ) ) |
| 38 | 37 | oveq1d | |- ( ( N e. NN /\ A e. X ) -> ( A P B ) = ( ( N S ( ( 1 / N ) S A ) ) P B ) ) |
| 39 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 40 | 39 | adantr | |- ( ( N e. NN /\ A e. X ) -> N e. NN0 ) |
| 41 | 1 2 3 4 5 6 | ipasslem1 | |- ( ( N e. NN0 /\ ( ( 1 / N ) S A ) e. X ) -> ( ( N S ( ( 1 / N ) S A ) ) P B ) = ( N x. ( ( ( 1 / N ) S A ) P B ) ) ) |
| 42 | 40 12 41 | syl2anc | |- ( ( N e. NN /\ A e. X ) -> ( ( N S ( ( 1 / N ) S A ) ) P B ) = ( N x. ( ( ( 1 / N ) S A ) P B ) ) ) |
| 43 | 27 38 42 | 3eqtrd | |- ( ( N e. NN /\ A e. X ) -> ( ( N x. ( 1 / N ) ) x. ( A P B ) ) = ( N x. ( ( ( 1 / N ) S A ) P B ) ) ) |
| 44 | 17 | adantl | |- ( ( N e. NN /\ A e. X ) -> ( A P B ) e. CC ) |
| 45 | 21 32 44 | mulassd | |- ( ( N e. NN /\ A e. X ) -> ( ( N x. ( 1 / N ) ) x. ( A P B ) ) = ( N x. ( ( 1 / N ) x. ( A P B ) ) ) ) |
| 46 | 43 45 | eqtr3d | |- ( ( N e. NN /\ A e. X ) -> ( N x. ( ( ( 1 / N ) S A ) P B ) ) = ( N x. ( ( 1 / N ) x. ( A P B ) ) ) ) |
| 47 | 15 19 21 23 46 | mulcanad | |- ( ( N e. NN /\ A e. X ) -> ( ( ( 1 / N ) S A ) P B ) = ( ( 1 / N ) x. ( A P B ) ) ) |