This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Describe a bijection from [ 0 , 1 ] to an arbitrary nontrivial closed interval [ A , B ] . (Contributed by Mario Carneiro, 8-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iccf1o.1 | |- F = ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) |
|
| Assertion | iccf1o | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) /\ `' F = ( y e. ( A [,] B ) |-> ( ( y - A ) / ( B - A ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccf1o.1 | |- F = ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) |
|
| 2 | elicc01 | |- ( x e. ( 0 [,] 1 ) <-> ( x e. RR /\ 0 <_ x /\ x <_ 1 ) ) |
|
| 3 | 2 | simp1bi | |- ( x e. ( 0 [,] 1 ) -> x e. RR ) |
| 4 | 3 | adantl | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> x e. RR ) |
| 5 | 4 | recnd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> x e. CC ) |
| 6 | simpl2 | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> B e. RR ) |
|
| 7 | 6 | recnd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> B e. CC ) |
| 8 | 5 7 | mulcld | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( x x. B ) e. CC ) |
| 9 | ax-1cn | |- 1 e. CC |
|
| 10 | subcl | |- ( ( 1 e. CC /\ x e. CC ) -> ( 1 - x ) e. CC ) |
|
| 11 | 9 5 10 | sylancr | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( 1 - x ) e. CC ) |
| 12 | simpl1 | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> A e. RR ) |
|
| 13 | 12 | recnd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> A e. CC ) |
| 14 | 11 13 | mulcld | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( 1 - x ) x. A ) e. CC ) |
| 15 | 8 14 | addcomd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) = ( ( ( 1 - x ) x. A ) + ( x x. B ) ) ) |
| 16 | lincmb01cmp | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( ( 1 - x ) x. A ) + ( x x. B ) ) e. ( A [,] B ) ) |
|
| 17 | 15 16 | eqeltrd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) e. ( A [,] B ) ) |
| 18 | simpr | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> y e. ( A [,] B ) ) |
|
| 19 | simpl1 | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> A e. RR ) |
|
| 20 | simpl2 | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> B e. RR ) |
|
| 21 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( y e. ( A [,] B ) <-> ( y e. RR /\ A <_ y /\ y <_ B ) ) ) |
|
| 22 | 21 | 3adant3 | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( y e. ( A [,] B ) <-> ( y e. RR /\ A <_ y /\ y <_ B ) ) ) |
| 23 | 22 | biimpa | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( y e. RR /\ A <_ y /\ y <_ B ) ) |
| 24 | 23 | simp1d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> y e. RR ) |
| 25 | eqid | |- ( A - A ) = ( A - A ) |
|
| 26 | eqid | |- ( B - A ) = ( B - A ) |
|
| 27 | 25 26 | iccshftl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. RR /\ A e. RR ) ) -> ( y e. ( A [,] B ) <-> ( y - A ) e. ( ( A - A ) [,] ( B - A ) ) ) ) |
| 28 | 19 20 24 19 27 | syl22anc | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( y e. ( A [,] B ) <-> ( y - A ) e. ( ( A - A ) [,] ( B - A ) ) ) ) |
| 29 | 18 28 | mpbid | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( y - A ) e. ( ( A - A ) [,] ( B - A ) ) ) |
| 30 | 24 19 | resubcld | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( y - A ) e. RR ) |
| 31 | 30 | recnd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( y - A ) e. CC ) |
| 32 | difrp | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( B - A ) e. RR+ ) ) |
|
| 33 | 32 | biimp3a | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( B - A ) e. RR+ ) |
| 34 | 33 | adantr | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( B - A ) e. RR+ ) |
| 35 | 34 | rpcnd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( B - A ) e. CC ) |
| 36 | 34 | rpne0d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( B - A ) =/= 0 ) |
| 37 | 31 35 36 | divcan1d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( ( ( y - A ) / ( B - A ) ) x. ( B - A ) ) = ( y - A ) ) |
| 38 | 35 | mul02d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( 0 x. ( B - A ) ) = 0 ) |
| 39 | 19 | recnd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> A e. CC ) |
| 40 | 39 | subidd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( A - A ) = 0 ) |
| 41 | 38 40 | eqtr4d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( 0 x. ( B - A ) ) = ( A - A ) ) |
| 42 | 35 | mullidd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( 1 x. ( B - A ) ) = ( B - A ) ) |
| 43 | 41 42 | oveq12d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( ( 0 x. ( B - A ) ) [,] ( 1 x. ( B - A ) ) ) = ( ( A - A ) [,] ( B - A ) ) ) |
| 44 | 29 37 43 | 3eltr4d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( ( ( y - A ) / ( B - A ) ) x. ( B - A ) ) e. ( ( 0 x. ( B - A ) ) [,] ( 1 x. ( B - A ) ) ) ) |
| 45 | 0red | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> 0 e. RR ) |
|
| 46 | 1red | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> 1 e. RR ) |
|
| 47 | 30 34 | rerpdivcld | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( ( y - A ) / ( B - A ) ) e. RR ) |
| 48 | eqid | |- ( 0 x. ( B - A ) ) = ( 0 x. ( B - A ) ) |
|
| 49 | eqid | |- ( 1 x. ( B - A ) ) = ( 1 x. ( B - A ) ) |
|
| 50 | 48 49 | iccdil | |- ( ( ( 0 e. RR /\ 1 e. RR ) /\ ( ( ( y - A ) / ( B - A ) ) e. RR /\ ( B - A ) e. RR+ ) ) -> ( ( ( y - A ) / ( B - A ) ) e. ( 0 [,] 1 ) <-> ( ( ( y - A ) / ( B - A ) ) x. ( B - A ) ) e. ( ( 0 x. ( B - A ) ) [,] ( 1 x. ( B - A ) ) ) ) ) |
| 51 | 45 46 47 34 50 | syl22anc | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( ( ( y - A ) / ( B - A ) ) e. ( 0 [,] 1 ) <-> ( ( ( y - A ) / ( B - A ) ) x. ( B - A ) ) e. ( ( 0 x. ( B - A ) ) [,] ( 1 x. ( B - A ) ) ) ) ) |
| 52 | 44 51 | mpbird | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( ( y - A ) / ( B - A ) ) e. ( 0 [,] 1 ) ) |
| 53 | eqcom | |- ( x = ( ( y - A ) / ( B - A ) ) <-> ( ( y - A ) / ( B - A ) ) = x ) |
|
| 54 | 31 | adantrl | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( y - A ) e. CC ) |
| 55 | 5 | adantrr | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> x e. CC ) |
| 56 | 35 | adantrl | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( B - A ) e. CC ) |
| 57 | 36 | adantrl | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( B - A ) =/= 0 ) |
| 58 | 54 55 56 57 | divmul3d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( ( ( y - A ) / ( B - A ) ) = x <-> ( y - A ) = ( x x. ( B - A ) ) ) ) |
| 59 | 53 58 | bitrid | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( x = ( ( y - A ) / ( B - A ) ) <-> ( y - A ) = ( x x. ( B - A ) ) ) ) |
| 60 | 24 | adantrl | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> y e. RR ) |
| 61 | 60 | recnd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> y e. CC ) |
| 62 | 39 | adantrl | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> A e. CC ) |
| 63 | 6 12 | resubcld | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( B - A ) e. RR ) |
| 64 | 4 63 | remulcld | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( x x. ( B - A ) ) e. RR ) |
| 65 | 64 | adantrr | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( x x. ( B - A ) ) e. RR ) |
| 66 | 65 | recnd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( x x. ( B - A ) ) e. CC ) |
| 67 | 61 62 66 | subadd2d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( ( y - A ) = ( x x. ( B - A ) ) <-> ( ( x x. ( B - A ) ) + A ) = y ) ) |
| 68 | eqcom | |- ( ( ( x x. ( B - A ) ) + A ) = y <-> y = ( ( x x. ( B - A ) ) + A ) ) |
|
| 69 | 67 68 | bitrdi | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( ( y - A ) = ( x x. ( B - A ) ) <-> y = ( ( x x. ( B - A ) ) + A ) ) ) |
| 70 | 5 13 | mulcld | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( x x. A ) e. CC ) |
| 71 | 8 70 13 | subadd23d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( ( x x. B ) - ( x x. A ) ) + A ) = ( ( x x. B ) + ( A - ( x x. A ) ) ) ) |
| 72 | 5 7 13 | subdid | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( x x. ( B - A ) ) = ( ( x x. B ) - ( x x. A ) ) ) |
| 73 | 72 | oveq1d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( x x. ( B - A ) ) + A ) = ( ( ( x x. B ) - ( x x. A ) ) + A ) ) |
| 74 | 1cnd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> 1 e. CC ) |
|
| 75 | 74 5 13 | subdird | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( 1 - x ) x. A ) = ( ( 1 x. A ) - ( x x. A ) ) ) |
| 76 | 13 | mullidd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( 1 x. A ) = A ) |
| 77 | 76 | oveq1d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( 1 x. A ) - ( x x. A ) ) = ( A - ( x x. A ) ) ) |
| 78 | 75 77 | eqtrd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( 1 - x ) x. A ) = ( A - ( x x. A ) ) ) |
| 79 | 78 | oveq2d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) = ( ( x x. B ) + ( A - ( x x. A ) ) ) ) |
| 80 | 71 73 79 | 3eqtr4d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( x x. ( B - A ) ) + A ) = ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) |
| 81 | 80 | adantrr | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( ( x x. ( B - A ) ) + A ) = ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) |
| 82 | 81 | eqeq2d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( y = ( ( x x. ( B - A ) ) + A ) <-> y = ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) ) |
| 83 | 59 69 82 | 3bitrd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( x = ( ( y - A ) / ( B - A ) ) <-> y = ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) ) |
| 84 | 1 17 52 83 | f1ocnv2d | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) /\ `' F = ( y e. ( A [,] B ) |-> ( ( y - A ) / ( B - A ) ) ) ) ) |