This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iccdil.1 | |- ( A x. R ) = C |
|
| iccdil.2 | |- ( B x. R ) = D |
||
| Assertion | iccdil | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( X e. ( A [,] B ) <-> ( X x. R ) e. ( C [,] D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccdil.1 | |- ( A x. R ) = C |
|
| 2 | iccdil.2 | |- ( B x. R ) = D |
|
| 3 | simpl | |- ( ( X e. RR /\ R e. RR+ ) -> X e. RR ) |
|
| 4 | rpre | |- ( R e. RR+ -> R e. RR ) |
|
| 5 | remulcl | |- ( ( X e. RR /\ R e. RR ) -> ( X x. R ) e. RR ) |
|
| 6 | 4 5 | sylan2 | |- ( ( X e. RR /\ R e. RR+ ) -> ( X x. R ) e. RR ) |
| 7 | 3 6 | 2thd | |- ( ( X e. RR /\ R e. RR+ ) -> ( X e. RR <-> ( X x. R ) e. RR ) ) |
| 8 | 7 | adantl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( X e. RR <-> ( X x. R ) e. RR ) ) |
| 9 | elrp | |- ( R e. RR+ <-> ( R e. RR /\ 0 < R ) ) |
|
| 10 | lemul1 | |- ( ( A e. RR /\ X e. RR /\ ( R e. RR /\ 0 < R ) ) -> ( A <_ X <-> ( A x. R ) <_ ( X x. R ) ) ) |
|
| 11 | 9 10 | syl3an3b | |- ( ( A e. RR /\ X e. RR /\ R e. RR+ ) -> ( A <_ X <-> ( A x. R ) <_ ( X x. R ) ) ) |
| 12 | 11 | 3expb | |- ( ( A e. RR /\ ( X e. RR /\ R e. RR+ ) ) -> ( A <_ X <-> ( A x. R ) <_ ( X x. R ) ) ) |
| 13 | 12 | adantlr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( A <_ X <-> ( A x. R ) <_ ( X x. R ) ) ) |
| 14 | 1 | breq1i | |- ( ( A x. R ) <_ ( X x. R ) <-> C <_ ( X x. R ) ) |
| 15 | 13 14 | bitrdi | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( A <_ X <-> C <_ ( X x. R ) ) ) |
| 16 | lemul1 | |- ( ( X e. RR /\ B e. RR /\ ( R e. RR /\ 0 < R ) ) -> ( X <_ B <-> ( X x. R ) <_ ( B x. R ) ) ) |
|
| 17 | 9 16 | syl3an3b | |- ( ( X e. RR /\ B e. RR /\ R e. RR+ ) -> ( X <_ B <-> ( X x. R ) <_ ( B x. R ) ) ) |
| 18 | 17 | 3expb | |- ( ( X e. RR /\ ( B e. RR /\ R e. RR+ ) ) -> ( X <_ B <-> ( X x. R ) <_ ( B x. R ) ) ) |
| 19 | 18 | an12s | |- ( ( B e. RR /\ ( X e. RR /\ R e. RR+ ) ) -> ( X <_ B <-> ( X x. R ) <_ ( B x. R ) ) ) |
| 20 | 19 | adantll | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( X <_ B <-> ( X x. R ) <_ ( B x. R ) ) ) |
| 21 | 2 | breq2i | |- ( ( X x. R ) <_ ( B x. R ) <-> ( X x. R ) <_ D ) |
| 22 | 20 21 | bitrdi | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( X <_ B <-> ( X x. R ) <_ D ) ) |
| 23 | 8 15 22 | 3anbi123d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( ( X e. RR /\ A <_ X /\ X <_ B ) <-> ( ( X x. R ) e. RR /\ C <_ ( X x. R ) /\ ( X x. R ) <_ D ) ) ) |
| 24 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( X e. ( A [,] B ) <-> ( X e. RR /\ A <_ X /\ X <_ B ) ) ) |
|
| 25 | 24 | adantr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( X e. ( A [,] B ) <-> ( X e. RR /\ A <_ X /\ X <_ B ) ) ) |
| 26 | remulcl | |- ( ( A e. RR /\ R e. RR ) -> ( A x. R ) e. RR ) |
|
| 27 | 1 26 | eqeltrrid | |- ( ( A e. RR /\ R e. RR ) -> C e. RR ) |
| 28 | remulcl | |- ( ( B e. RR /\ R e. RR ) -> ( B x. R ) e. RR ) |
|
| 29 | 2 28 | eqeltrrid | |- ( ( B e. RR /\ R e. RR ) -> D e. RR ) |
| 30 | elicc2 | |- ( ( C e. RR /\ D e. RR ) -> ( ( X x. R ) e. ( C [,] D ) <-> ( ( X x. R ) e. RR /\ C <_ ( X x. R ) /\ ( X x. R ) <_ D ) ) ) |
|
| 31 | 27 29 30 | syl2an | |- ( ( ( A e. RR /\ R e. RR ) /\ ( B e. RR /\ R e. RR ) ) -> ( ( X x. R ) e. ( C [,] D ) <-> ( ( X x. R ) e. RR /\ C <_ ( X x. R ) /\ ( X x. R ) <_ D ) ) ) |
| 32 | 31 | anandirs | |- ( ( ( A e. RR /\ B e. RR ) /\ R e. RR ) -> ( ( X x. R ) e. ( C [,] D ) <-> ( ( X x. R ) e. RR /\ C <_ ( X x. R ) /\ ( X x. R ) <_ D ) ) ) |
| 33 | 4 32 | sylan2 | |- ( ( ( A e. RR /\ B e. RR ) /\ R e. RR+ ) -> ( ( X x. R ) e. ( C [,] D ) <-> ( ( X x. R ) e. RR /\ C <_ ( X x. R ) /\ ( X x. R ) <_ D ) ) ) |
| 34 | 33 | adantrl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( ( X x. R ) e. ( C [,] D ) <-> ( ( X x. R ) e. RR /\ C <_ ( X x. R ) /\ ( X x. R ) <_ D ) ) ) |
| 35 | 23 25 34 | 3bitr4d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( X e. ( A [,] B ) <-> ( X x. R ) e. ( C [,] D ) ) ) |