This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any nontrivial closed interval is equinumerous to the unit interval. (Contributed by Mario Carneiro, 26-Jul-2014) (Revised by Mario Carneiro, 8-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccen | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( 0 [,] 1 ) ~~ ( A [,] B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex | |- ( 0 [,] 1 ) e. _V |
|
| 2 | ovex | |- ( A [,] B ) e. _V |
|
| 3 | eqid | |- ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) = ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) |
|
| 4 | 3 | iccf1o | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) /\ `' ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) = ( y e. ( A [,] B ) |-> ( ( y - A ) / ( B - A ) ) ) ) ) |
| 5 | 4 | simpld | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) ) |
| 6 | f1oen2g | |- ( ( ( 0 [,] 1 ) e. _V /\ ( A [,] B ) e. _V /\ ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) ) -> ( 0 [,] 1 ) ~~ ( A [,] B ) ) |
|
| 7 | 1 2 5 6 | mp3an12i | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( 0 [,] 1 ) ~~ ( A [,] B ) ) |