This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iccshftl.1 | |- ( A - R ) = C |
|
| iccshftl.2 | |- ( B - R ) = D |
||
| Assertion | iccshftl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( X e. ( A [,] B ) <-> ( X - R ) e. ( C [,] D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccshftl.1 | |- ( A - R ) = C |
|
| 2 | iccshftl.2 | |- ( B - R ) = D |
|
| 3 | simpl | |- ( ( X e. RR /\ R e. RR ) -> X e. RR ) |
|
| 4 | resubcl | |- ( ( X e. RR /\ R e. RR ) -> ( X - R ) e. RR ) |
|
| 5 | 3 4 | 2thd | |- ( ( X e. RR /\ R e. RR ) -> ( X e. RR <-> ( X - R ) e. RR ) ) |
| 6 | 5 | adantl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( X e. RR <-> ( X - R ) e. RR ) ) |
| 7 | lesub1 | |- ( ( A e. RR /\ X e. RR /\ R e. RR ) -> ( A <_ X <-> ( A - R ) <_ ( X - R ) ) ) |
|
| 8 | 7 | 3expb | |- ( ( A e. RR /\ ( X e. RR /\ R e. RR ) ) -> ( A <_ X <-> ( A - R ) <_ ( X - R ) ) ) |
| 9 | 8 | adantlr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( A <_ X <-> ( A - R ) <_ ( X - R ) ) ) |
| 10 | 1 | breq1i | |- ( ( A - R ) <_ ( X - R ) <-> C <_ ( X - R ) ) |
| 11 | 9 10 | bitrdi | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( A <_ X <-> C <_ ( X - R ) ) ) |
| 12 | lesub1 | |- ( ( X e. RR /\ B e. RR /\ R e. RR ) -> ( X <_ B <-> ( X - R ) <_ ( B - R ) ) ) |
|
| 13 | 12 | 3expb | |- ( ( X e. RR /\ ( B e. RR /\ R e. RR ) ) -> ( X <_ B <-> ( X - R ) <_ ( B - R ) ) ) |
| 14 | 13 | an12s | |- ( ( B e. RR /\ ( X e. RR /\ R e. RR ) ) -> ( X <_ B <-> ( X - R ) <_ ( B - R ) ) ) |
| 15 | 14 | adantll | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( X <_ B <-> ( X - R ) <_ ( B - R ) ) ) |
| 16 | 2 | breq2i | |- ( ( X - R ) <_ ( B - R ) <-> ( X - R ) <_ D ) |
| 17 | 15 16 | bitrdi | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( X <_ B <-> ( X - R ) <_ D ) ) |
| 18 | 6 11 17 | 3anbi123d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( ( X e. RR /\ A <_ X /\ X <_ B ) <-> ( ( X - R ) e. RR /\ C <_ ( X - R ) /\ ( X - R ) <_ D ) ) ) |
| 19 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( X e. ( A [,] B ) <-> ( X e. RR /\ A <_ X /\ X <_ B ) ) ) |
|
| 20 | 19 | adantr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( X e. ( A [,] B ) <-> ( X e. RR /\ A <_ X /\ X <_ B ) ) ) |
| 21 | resubcl | |- ( ( A e. RR /\ R e. RR ) -> ( A - R ) e. RR ) |
|
| 22 | 1 21 | eqeltrrid | |- ( ( A e. RR /\ R e. RR ) -> C e. RR ) |
| 23 | resubcl | |- ( ( B e. RR /\ R e. RR ) -> ( B - R ) e. RR ) |
|
| 24 | 2 23 | eqeltrrid | |- ( ( B e. RR /\ R e. RR ) -> D e. RR ) |
| 25 | elicc2 | |- ( ( C e. RR /\ D e. RR ) -> ( ( X - R ) e. ( C [,] D ) <-> ( ( X - R ) e. RR /\ C <_ ( X - R ) /\ ( X - R ) <_ D ) ) ) |
|
| 26 | 22 24 25 | syl2an | |- ( ( ( A e. RR /\ R e. RR ) /\ ( B e. RR /\ R e. RR ) ) -> ( ( X - R ) e. ( C [,] D ) <-> ( ( X - R ) e. RR /\ C <_ ( X - R ) /\ ( X - R ) <_ D ) ) ) |
| 27 | 26 | anandirs | |- ( ( ( A e. RR /\ B e. RR ) /\ R e. RR ) -> ( ( X - R ) e. ( C [,] D ) <-> ( ( X - R ) e. RR /\ C <_ ( X - R ) /\ ( X - R ) <_ D ) ) ) |
| 28 | 27 | adantrl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( ( X - R ) e. ( C [,] D ) <-> ( ( X - R ) e. RR /\ C <_ ( X - R ) /\ ( X - R ) <_ D ) ) ) |
| 29 | 18 20 28 | 3bitr4d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( X e. ( A [,] B ) <-> ( X - R ) e. ( C [,] D ) ) ) |