This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a normed complex vector space. (Contributed by NM, 15-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isnvi.5 | |- X = ran G |
|
| isnvi.6 | |- Z = ( GId ` G ) |
||
| isnvi.7 | |- <. G , S >. e. CVecOLD |
||
| isnvi.8 | |- N : X --> RR |
||
| isnvi.9 | |- ( ( x e. X /\ ( N ` x ) = 0 ) -> x = Z ) |
||
| isnvi.10 | |- ( ( y e. CC /\ x e. X ) -> ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) ) |
||
| isnvi.11 | |- ( ( x e. X /\ y e. X ) -> ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) |
||
| isnvi.12 | |- U = <. <. G , S >. , N >. |
||
| Assertion | isnvi | |- U e. NrmCVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnvi.5 | |- X = ran G |
|
| 2 | isnvi.6 | |- Z = ( GId ` G ) |
|
| 3 | isnvi.7 | |- <. G , S >. e. CVecOLD |
|
| 4 | isnvi.8 | |- N : X --> RR |
|
| 5 | isnvi.9 | |- ( ( x e. X /\ ( N ` x ) = 0 ) -> x = Z ) |
|
| 6 | isnvi.10 | |- ( ( y e. CC /\ x e. X ) -> ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) ) |
|
| 7 | isnvi.11 | |- ( ( x e. X /\ y e. X ) -> ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) |
|
| 8 | isnvi.12 | |- U = <. <. G , S >. , N >. |
|
| 9 | 5 | ex | |- ( x e. X -> ( ( N ` x ) = 0 -> x = Z ) ) |
| 10 | 6 | ancoms | |- ( ( x e. X /\ y e. CC ) -> ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) ) |
| 11 | 10 | ralrimiva | |- ( x e. X -> A. y e. CC ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) ) |
| 12 | 7 | ralrimiva | |- ( x e. X -> A. y e. X ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) |
| 13 | 9 11 12 | 3jca | |- ( x e. X -> ( ( ( N ` x ) = 0 -> x = Z ) /\ A. y e. CC ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) ) |
| 14 | 13 | rgen | |- A. x e. X ( ( ( N ` x ) = 0 -> x = Z ) /\ A. y e. CC ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) |
| 15 | 1 2 | isnv | |- ( <. <. G , S >. , N >. e. NrmCVec <-> ( <. G , S >. e. CVecOLD /\ N : X --> RR /\ A. x e. X ( ( ( N ` x ) = 0 -> x = Z ) /\ A. y e. CC ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) ) ) |
| 16 | 3 4 14 15 | mpbir3an | |- <. <. G , S >. , N >. e. NrmCVec |
| 17 | 8 16 | eqeltri | |- U e. NrmCVec |