This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that an element of a group is the identity element. (Contributed by Paul Chapman, 25-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpoinveu.1 | |- X = ran G |
|
| grpoinveu.2 | |- U = ( GId ` G ) |
||
| Assertion | grpoid | |- ( ( G e. GrpOp /\ A e. X ) -> ( A = U <-> ( A G A ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpoinveu.1 | |- X = ran G |
|
| 2 | grpoinveu.2 | |- U = ( GId ` G ) |
|
| 3 | 1 2 | grpoidcl | |- ( G e. GrpOp -> U e. X ) |
| 4 | 1 | grporcan | |- ( ( G e. GrpOp /\ ( A e. X /\ U e. X /\ A e. X ) ) -> ( ( A G A ) = ( U G A ) <-> A = U ) ) |
| 5 | 4 | 3exp2 | |- ( G e. GrpOp -> ( A e. X -> ( U e. X -> ( A e. X -> ( ( A G A ) = ( U G A ) <-> A = U ) ) ) ) ) |
| 6 | 3 5 | mpid | |- ( G e. GrpOp -> ( A e. X -> ( A e. X -> ( ( A G A ) = ( U G A ) <-> A = U ) ) ) ) |
| 7 | 6 | pm2.43d | |- ( G e. GrpOp -> ( A e. X -> ( ( A G A ) = ( U G A ) <-> A = U ) ) ) |
| 8 | 7 | imp | |- ( ( G e. GrpOp /\ A e. X ) -> ( ( A G A ) = ( U G A ) <-> A = U ) ) |
| 9 | 1 2 | grpolid | |- ( ( G e. GrpOp /\ A e. X ) -> ( U G A ) = A ) |
| 10 | 9 | eqeq2d | |- ( ( G e. GrpOp /\ A e. X ) -> ( ( A G A ) = ( U G A ) <-> ( A G A ) = A ) ) |
| 11 | 8 10 | bitr3d | |- ( ( G e. GrpOp /\ A e. X ) -> ( A = U <-> ( A G A ) = A ) ) |