This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Normed complex vector space property of a subspace. (Contributed by NM, 9-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hhssnvt.1 | |- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
|
| Assertion | hhssnvt | |- ( H e. SH -> W e. NrmCVec ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhssnvt.1 | |- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
|
| 2 | xpeq1 | |- ( H = if ( H e. SH , H , 0H ) -> ( H X. H ) = ( if ( H e. SH , H , 0H ) X. H ) ) |
|
| 3 | xpeq2 | |- ( H = if ( H e. SH , H , 0H ) -> ( if ( H e. SH , H , 0H ) X. H ) = ( if ( H e. SH , H , 0H ) X. if ( H e. SH , H , 0H ) ) ) |
|
| 4 | 2 3 | eqtrd | |- ( H = if ( H e. SH , H , 0H ) -> ( H X. H ) = ( if ( H e. SH , H , 0H ) X. if ( H e. SH , H , 0H ) ) ) |
| 5 | 4 | reseq2d | |- ( H = if ( H e. SH , H , 0H ) -> ( +h |` ( H X. H ) ) = ( +h |` ( if ( H e. SH , H , 0H ) X. if ( H e. SH , H , 0H ) ) ) ) |
| 6 | xpeq2 | |- ( H = if ( H e. SH , H , 0H ) -> ( CC X. H ) = ( CC X. if ( H e. SH , H , 0H ) ) ) |
|
| 7 | 6 | reseq2d | |- ( H = if ( H e. SH , H , 0H ) -> ( .h |` ( CC X. H ) ) = ( .h |` ( CC X. if ( H e. SH , H , 0H ) ) ) ) |
| 8 | 5 7 | opeq12d | |- ( H = if ( H e. SH , H , 0H ) -> <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. = <. ( +h |` ( if ( H e. SH , H , 0H ) X. if ( H e. SH , H , 0H ) ) ) , ( .h |` ( CC X. if ( H e. SH , H , 0H ) ) ) >. ) |
| 9 | reseq2 | |- ( H = if ( H e. SH , H , 0H ) -> ( normh |` H ) = ( normh |` if ( H e. SH , H , 0H ) ) ) |
|
| 10 | 8 9 | opeq12d | |- ( H = if ( H e. SH , H , 0H ) -> <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. = <. <. ( +h |` ( if ( H e. SH , H , 0H ) X. if ( H e. SH , H , 0H ) ) ) , ( .h |` ( CC X. if ( H e. SH , H , 0H ) ) ) >. , ( normh |` if ( H e. SH , H , 0H ) ) >. ) |
| 11 | 1 10 | eqtrid | |- ( H = if ( H e. SH , H , 0H ) -> W = <. <. ( +h |` ( if ( H e. SH , H , 0H ) X. if ( H e. SH , H , 0H ) ) ) , ( .h |` ( CC X. if ( H e. SH , H , 0H ) ) ) >. , ( normh |` if ( H e. SH , H , 0H ) ) >. ) |
| 12 | 11 | eleq1d | |- ( H = if ( H e. SH , H , 0H ) -> ( W e. NrmCVec <-> <. <. ( +h |` ( if ( H e. SH , H , 0H ) X. if ( H e. SH , H , 0H ) ) ) , ( .h |` ( CC X. if ( H e. SH , H , 0H ) ) ) >. , ( normh |` if ( H e. SH , H , 0H ) ) >. e. NrmCVec ) ) |
| 13 | eqid | |- <. <. ( +h |` ( if ( H e. SH , H , 0H ) X. if ( H e. SH , H , 0H ) ) ) , ( .h |` ( CC X. if ( H e. SH , H , 0H ) ) ) >. , ( normh |` if ( H e. SH , H , 0H ) ) >. = <. <. ( +h |` ( if ( H e. SH , H , 0H ) X. if ( H e. SH , H , 0H ) ) ) , ( .h |` ( CC X. if ( H e. SH , H , 0H ) ) ) >. , ( normh |` if ( H e. SH , H , 0H ) ) >. |
|
| 14 | h0elsh | |- 0H e. SH |
|
| 15 | 14 | elimel | |- if ( H e. SH , H , 0H ) e. SH |
| 16 | 13 15 | hhssnv | |- <. <. ( +h |` ( if ( H e. SH , H , 0H ) X. if ( H e. SH , H , 0H ) ) ) , ( .h |` ( CC X. if ( H e. SH , H , 0H ) ) ) >. , ( normh |` if ( H e. SH , H , 0H ) ) >. e. NrmCVec |
| 17 | 12 16 | dedth | |- ( H e. SH -> W e. NrmCVec ) |