This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a complex vector space. (Contributed by NM, 5-Nov-2006) Obsolete version of iscvsi . (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isvciOLD.1 | |- G e. AbelOp |
|
| isvciOLD.2 | |- dom G = ( X X. X ) |
||
| isvciOLD.3 | |- S : ( CC X. X ) --> X |
||
| isvciOLD.4 | |- ( x e. X -> ( 1 S x ) = x ) |
||
| isvciOLD.5 | |- ( ( y e. CC /\ x e. X /\ z e. X ) -> ( y S ( x G z ) ) = ( ( y S x ) G ( y S z ) ) ) |
||
| isvciOLD.6 | |- ( ( y e. CC /\ z e. CC /\ x e. X ) -> ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) ) |
||
| isvciOLD.7 | |- ( ( y e. CC /\ z e. CC /\ x e. X ) -> ( ( y x. z ) S x ) = ( y S ( z S x ) ) ) |
||
| isvciOLD.8 | |- W = <. G , S >. |
||
| Assertion | isvciOLD | |- W e. CVecOLD |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isvciOLD.1 | |- G e. AbelOp |
|
| 2 | isvciOLD.2 | |- dom G = ( X X. X ) |
|
| 3 | isvciOLD.3 | |- S : ( CC X. X ) --> X |
|
| 4 | isvciOLD.4 | |- ( x e. X -> ( 1 S x ) = x ) |
|
| 5 | isvciOLD.5 | |- ( ( y e. CC /\ x e. X /\ z e. X ) -> ( y S ( x G z ) ) = ( ( y S x ) G ( y S z ) ) ) |
|
| 6 | isvciOLD.6 | |- ( ( y e. CC /\ z e. CC /\ x e. X ) -> ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) ) |
|
| 7 | isvciOLD.7 | |- ( ( y e. CC /\ z e. CC /\ x e. X ) -> ( ( y x. z ) S x ) = ( y S ( z S x ) ) ) |
|
| 8 | isvciOLD.8 | |- W = <. G , S >. |
|
| 9 | 5 | 3com12 | |- ( ( x e. X /\ y e. CC /\ z e. X ) -> ( y S ( x G z ) ) = ( ( y S x ) G ( y S z ) ) ) |
| 10 | 9 | 3expa | |- ( ( ( x e. X /\ y e. CC ) /\ z e. X ) -> ( y S ( x G z ) ) = ( ( y S x ) G ( y S z ) ) ) |
| 11 | 10 | ralrimiva | |- ( ( x e. X /\ y e. CC ) -> A. z e. X ( y S ( x G z ) ) = ( ( y S x ) G ( y S z ) ) ) |
| 12 | 6 7 | jca | |- ( ( y e. CC /\ z e. CC /\ x e. X ) -> ( ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) /\ ( ( y x. z ) S x ) = ( y S ( z S x ) ) ) ) |
| 13 | 12 | 3comr | |- ( ( x e. X /\ y e. CC /\ z e. CC ) -> ( ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) /\ ( ( y x. z ) S x ) = ( y S ( z S x ) ) ) ) |
| 14 | 13 | 3expa | |- ( ( ( x e. X /\ y e. CC ) /\ z e. CC ) -> ( ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) /\ ( ( y x. z ) S x ) = ( y S ( z S x ) ) ) ) |
| 15 | 14 | ralrimiva | |- ( ( x e. X /\ y e. CC ) -> A. z e. CC ( ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) /\ ( ( y x. z ) S x ) = ( y S ( z S x ) ) ) ) |
| 16 | 11 15 | jca | |- ( ( x e. X /\ y e. CC ) -> ( A. z e. X ( y S ( x G z ) ) = ( ( y S x ) G ( y S z ) ) /\ A. z e. CC ( ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) /\ ( ( y x. z ) S x ) = ( y S ( z S x ) ) ) ) ) |
| 17 | 16 | ralrimiva | |- ( x e. X -> A. y e. CC ( A. z e. X ( y S ( x G z ) ) = ( ( y S x ) G ( y S z ) ) /\ A. z e. CC ( ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) /\ ( ( y x. z ) S x ) = ( y S ( z S x ) ) ) ) ) |
| 18 | 4 17 | jca | |- ( x e. X -> ( ( 1 S x ) = x /\ A. y e. CC ( A. z e. X ( y S ( x G z ) ) = ( ( y S x ) G ( y S z ) ) /\ A. z e. CC ( ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) /\ ( ( y x. z ) S x ) = ( y S ( z S x ) ) ) ) ) ) |
| 19 | 18 | rgen | |- A. x e. X ( ( 1 S x ) = x /\ A. y e. CC ( A. z e. X ( y S ( x G z ) ) = ( ( y S x ) G ( y S z ) ) /\ A. z e. CC ( ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) /\ ( ( y x. z ) S x ) = ( y S ( z S x ) ) ) ) ) |
| 20 | ablogrpo | |- ( G e. AbelOp -> G e. GrpOp ) |
|
| 21 | 1 20 | ax-mp | |- G e. GrpOp |
| 22 | 21 2 | grporn | |- X = ran G |
| 23 | 22 | isvcOLD | |- ( <. G , S >. e. CVecOLD <-> ( G e. AbelOp /\ S : ( CC X. X ) --> X /\ A. x e. X ( ( 1 S x ) = x /\ A. y e. CC ( A. z e. X ( y S ( x G z ) ) = ( ( y S x ) G ( y S z ) ) /\ A. z e. CC ( ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) /\ ( ( y x. z ) S x ) = ( y S ( z S x ) ) ) ) ) ) ) |
| 24 | 1 3 19 23 | mpbir3an | |- <. G , S >. e. CVecOLD |
| 25 | 8 24 | eqeltri | |- W e. CVecOLD |