This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the centralizer of a singleton. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzfval.b | |- B = ( Base ` M ) |
|
| cntzfval.p | |- .+ = ( +g ` M ) |
||
| cntzfval.z | |- Z = ( Cntz ` M ) |
||
| Assertion | elcntzsn | |- ( Y e. B -> ( X e. ( Z ` { Y } ) <-> ( X e. B /\ ( X .+ Y ) = ( Y .+ X ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzfval.b | |- B = ( Base ` M ) |
|
| 2 | cntzfval.p | |- .+ = ( +g ` M ) |
|
| 3 | cntzfval.z | |- Z = ( Cntz ` M ) |
|
| 4 | 1 2 3 | cntzsnval | |- ( Y e. B -> ( Z ` { Y } ) = { x e. B | ( x .+ Y ) = ( Y .+ x ) } ) |
| 5 | 4 | eleq2d | |- ( Y e. B -> ( X e. ( Z ` { Y } ) <-> X e. { x e. B | ( x .+ Y ) = ( Y .+ x ) } ) ) |
| 6 | oveq1 | |- ( x = X -> ( x .+ Y ) = ( X .+ Y ) ) |
|
| 7 | oveq2 | |- ( x = X -> ( Y .+ x ) = ( Y .+ X ) ) |
|
| 8 | 6 7 | eqeq12d | |- ( x = X -> ( ( x .+ Y ) = ( Y .+ x ) <-> ( X .+ Y ) = ( Y .+ X ) ) ) |
| 9 | 8 | elrab | |- ( X e. { x e. B | ( x .+ Y ) = ( Y .+ x ) } <-> ( X e. B /\ ( X .+ Y ) = ( Y .+ X ) ) ) |
| 10 | 5 9 | bitrdi | |- ( Y e. B -> ( X e. ( Z ` { Y } ) <-> ( X e. B /\ ( X .+ Y ) = ( Y .+ X ) ) ) ) |