This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Re-index a finite group sum using a bijection. (Contributed by Thierry Arnoux, 29-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptf1o.x | |- F/_ x H |
|
| gsummptf1o.b | |- B = ( Base ` G ) |
||
| gsummptf1o.z | |- .0. = ( 0g ` G ) |
||
| gsummptf1o.i | |- ( x = E -> C = H ) |
||
| gsummptf1o.g | |- ( ph -> G e. CMnd ) |
||
| gsummptf1o.a | |- ( ph -> A e. Fin ) |
||
| gsummptf1o.d | |- ( ph -> F C_ B ) |
||
| gsummptf1o.f | |- ( ( ph /\ x e. A ) -> C e. F ) |
||
| gsummptf1o.e | |- ( ( ph /\ y e. D ) -> E e. A ) |
||
| gsummptf1o.h | |- ( ( ph /\ x e. A ) -> E! y e. D x = E ) |
||
| Assertion | gsummptf1o | |- ( ph -> ( G gsum ( x e. A |-> C ) ) = ( G gsum ( y e. D |-> H ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptf1o.x | |- F/_ x H |
|
| 2 | gsummptf1o.b | |- B = ( Base ` G ) |
|
| 3 | gsummptf1o.z | |- .0. = ( 0g ` G ) |
|
| 4 | gsummptf1o.i | |- ( x = E -> C = H ) |
|
| 5 | gsummptf1o.g | |- ( ph -> G e. CMnd ) |
|
| 6 | gsummptf1o.a | |- ( ph -> A e. Fin ) |
|
| 7 | gsummptf1o.d | |- ( ph -> F C_ B ) |
|
| 8 | gsummptf1o.f | |- ( ( ph /\ x e. A ) -> C e. F ) |
|
| 9 | gsummptf1o.e | |- ( ( ph /\ y e. D ) -> E e. A ) |
|
| 10 | gsummptf1o.h | |- ( ( ph /\ x e. A ) -> E! y e. D x = E ) |
|
| 11 | 7 | adantr | |- ( ( ph /\ x e. A ) -> F C_ B ) |
| 12 | 11 8 | sseldd | |- ( ( ph /\ x e. A ) -> C e. B ) |
| 13 | 12 | fmpttd | |- ( ph -> ( x e. A |-> C ) : A --> B ) |
| 14 | eqid | |- ( x e. A |-> C ) = ( x e. A |-> C ) |
|
| 15 | 3 | fvexi | |- .0. e. _V |
| 16 | 15 | a1i | |- ( ph -> .0. e. _V ) |
| 17 | 14 6 12 16 | fsuppmptdm | |- ( ph -> ( x e. A |-> C ) finSupp .0. ) |
| 18 | 9 | ralrimiva | |- ( ph -> A. y e. D E e. A ) |
| 19 | 10 | ralrimiva | |- ( ph -> A. x e. A E! y e. D x = E ) |
| 20 | eqid | |- ( y e. D |-> E ) = ( y e. D |-> E ) |
|
| 21 | 20 | f1ompt | |- ( ( y e. D |-> E ) : D -1-1-onto-> A <-> ( A. y e. D E e. A /\ A. x e. A E! y e. D x = E ) ) |
| 22 | 18 19 21 | sylanbrc | |- ( ph -> ( y e. D |-> E ) : D -1-1-onto-> A ) |
| 23 | 2 3 5 6 13 17 22 | gsumf1o | |- ( ph -> ( G gsum ( x e. A |-> C ) ) = ( G gsum ( ( x e. A |-> C ) o. ( y e. D |-> E ) ) ) ) |
| 24 | eqidd | |- ( ph -> ( y e. D |-> E ) = ( y e. D |-> E ) ) |
|
| 25 | eqidd | |- ( ph -> ( x e. A |-> C ) = ( x e. A |-> C ) ) |
|
| 26 | 18 24 25 | fmptcos | |- ( ph -> ( ( x e. A |-> C ) o. ( y e. D |-> E ) ) = ( y e. D |-> [_ E / x ]_ C ) ) |
| 27 | nfv | |- F/ x ( ph /\ y e. D ) |
|
| 28 | 1 | a1i | |- ( ( ph /\ y e. D ) -> F/_ x H ) |
| 29 | 4 | adantl | |- ( ( ( ph /\ y e. D ) /\ x = E ) -> C = H ) |
| 30 | 27 28 9 29 | csbiedf | |- ( ( ph /\ y e. D ) -> [_ E / x ]_ C = H ) |
| 31 | 30 | mpteq2dva | |- ( ph -> ( y e. D |-> [_ E / x ]_ C ) = ( y e. D |-> H ) ) |
| 32 | 26 31 | eqtrd | |- ( ph -> ( ( x e. A |-> C ) o. ( y e. D |-> E ) ) = ( y e. D |-> H ) ) |
| 33 | 32 | oveq2d | |- ( ph -> ( G gsum ( ( x e. A |-> C ) o. ( y e. D |-> E ) ) ) = ( G gsum ( y e. D |-> H ) ) ) |
| 34 | 23 33 | eqtrd | |- ( ph -> ( G gsum ( x e. A |-> C ) ) = ( G gsum ( y e. D |-> H ) ) ) |