This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group homomorphism preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmmulg.b | |- B = ( Base ` G ) |
|
| ghmmulg.s | |- .x. = ( .g ` G ) |
||
| ghmmulg.t | |- .X. = ( .g ` H ) |
||
| Assertion | ghmmulg | |- ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmmulg.b | |- B = ( Base ` G ) |
|
| 2 | ghmmulg.s | |- .x. = ( .g ` G ) |
|
| 3 | ghmmulg.t | |- .X. = ( .g ` H ) |
|
| 4 | ghmmhm | |- ( F e. ( G GrpHom H ) -> F e. ( G MndHom H ) ) |
|
| 5 | 1 2 3 | mhmmulg | |- ( ( F e. ( G MndHom H ) /\ N e. NN0 /\ X e. B ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) |
| 6 | 4 5 | syl3an1 | |- ( ( F e. ( G GrpHom H ) /\ N e. NN0 /\ X e. B ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) |
| 7 | 6 | 3expa | |- ( ( ( F e. ( G GrpHom H ) /\ N e. NN0 ) /\ X e. B ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) |
| 8 | 7 | an32s | |- ( ( ( F e. ( G GrpHom H ) /\ X e. B ) /\ N e. NN0 ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) |
| 9 | 8 | 3adantl2 | |- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ N e. NN0 ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) |
| 10 | simpl1 | |- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> F e. ( G GrpHom H ) ) |
|
| 11 | 10 4 | syl | |- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> F e. ( G MndHom H ) ) |
| 12 | nnnn0 | |- ( -u N e. NN -> -u N e. NN0 ) |
|
| 13 | 12 | ad2antll | |- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. NN0 ) |
| 14 | simpl3 | |- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> X e. B ) |
|
| 15 | 1 2 3 | mhmmulg | |- ( ( F e. ( G MndHom H ) /\ -u N e. NN0 /\ X e. B ) -> ( F ` ( -u N .x. X ) ) = ( -u N .X. ( F ` X ) ) ) |
| 16 | 11 13 14 15 | syl3anc | |- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( F ` ( -u N .x. X ) ) = ( -u N .X. ( F ` X ) ) ) |
| 17 | 16 | fveq2d | |- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( invg ` H ) ` ( F ` ( -u N .x. X ) ) ) = ( ( invg ` H ) ` ( -u N .X. ( F ` X ) ) ) ) |
| 18 | ghmgrp1 | |- ( F e. ( G GrpHom H ) -> G e. Grp ) |
|
| 19 | 10 18 | syl | |- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> G e. Grp ) |
| 20 | nnz | |- ( -u N e. NN -> -u N e. ZZ ) |
|
| 21 | 20 | ad2antll | |- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. ZZ ) |
| 22 | 1 2 | mulgcl | |- ( ( G e. Grp /\ -u N e. ZZ /\ X e. B ) -> ( -u N .x. X ) e. B ) |
| 23 | 19 21 14 22 | syl3anc | |- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u N .x. X ) e. B ) |
| 24 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 25 | eqid | |- ( invg ` H ) = ( invg ` H ) |
|
| 26 | 1 24 25 | ghminv | |- ( ( F e. ( G GrpHom H ) /\ ( -u N .x. X ) e. B ) -> ( F ` ( ( invg ` G ) ` ( -u N .x. X ) ) ) = ( ( invg ` H ) ` ( F ` ( -u N .x. X ) ) ) ) |
| 27 | 10 23 26 | syl2anc | |- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( F ` ( ( invg ` G ) ` ( -u N .x. X ) ) ) = ( ( invg ` H ) ` ( F ` ( -u N .x. X ) ) ) ) |
| 28 | ghmgrp2 | |- ( F e. ( G GrpHom H ) -> H e. Grp ) |
|
| 29 | 10 28 | syl | |- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> H e. Grp ) |
| 30 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 31 | 1 30 | ghmf | |- ( F e. ( G GrpHom H ) -> F : B --> ( Base ` H ) ) |
| 32 | 10 31 | syl | |- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> F : B --> ( Base ` H ) ) |
| 33 | 32 14 | ffvelcdmd | |- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( F ` X ) e. ( Base ` H ) ) |
| 34 | 30 3 25 | mulgneg | |- ( ( H e. Grp /\ -u N e. ZZ /\ ( F ` X ) e. ( Base ` H ) ) -> ( -u -u N .X. ( F ` X ) ) = ( ( invg ` H ) ` ( -u N .X. ( F ` X ) ) ) ) |
| 35 | 29 21 33 34 | syl3anc | |- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u -u N .X. ( F ` X ) ) = ( ( invg ` H ) ` ( -u N .X. ( F ` X ) ) ) ) |
| 36 | 17 27 35 | 3eqtr4d | |- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( F ` ( ( invg ` G ) ` ( -u N .x. X ) ) ) = ( -u -u N .X. ( F ` X ) ) ) |
| 37 | 1 2 24 | mulgneg | |- ( ( G e. Grp /\ -u N e. ZZ /\ X e. B ) -> ( -u -u N .x. X ) = ( ( invg ` G ) ` ( -u N .x. X ) ) ) |
| 38 | 19 21 14 37 | syl3anc | |- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u -u N .x. X ) = ( ( invg ` G ) ` ( -u N .x. X ) ) ) |
| 39 | simprl | |- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> N e. RR ) |
|
| 40 | 39 | recnd | |- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> N e. CC ) |
| 41 | 40 | negnegd | |- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u -u N = N ) |
| 42 | 41 | oveq1d | |- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u -u N .x. X ) = ( N .x. X ) ) |
| 43 | 38 42 | eqtr3d | |- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( invg ` G ) ` ( -u N .x. X ) ) = ( N .x. X ) ) |
| 44 | 43 | fveq2d | |- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( F ` ( ( invg ` G ) ` ( -u N .x. X ) ) ) = ( F ` ( N .x. X ) ) ) |
| 45 | 36 44 | eqtr3d | |- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u -u N .X. ( F ` X ) ) = ( F ` ( N .x. X ) ) ) |
| 46 | 41 | oveq1d | |- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u -u N .X. ( F ` X ) ) = ( N .X. ( F ` X ) ) ) |
| 47 | 45 46 | eqtr3d | |- ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) |
| 48 | simp2 | |- ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) -> N e. ZZ ) |
|
| 49 | elznn0nn | |- ( N e. ZZ <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
|
| 50 | 48 49 | sylib | |- ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) -> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
| 51 | 9 47 50 | mpjaodan | |- ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) |