This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A homomorphism of monoids preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mhmmulg.b | |- B = ( Base ` G ) |
|
| mhmmulg.s | |- .x. = ( .g ` G ) |
||
| mhmmulg.t | |- .X. = ( .g ` H ) |
||
| Assertion | mhmmulg | |- ( ( F e. ( G MndHom H ) /\ N e. NN0 /\ X e. B ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmmulg.b | |- B = ( Base ` G ) |
|
| 2 | mhmmulg.s | |- .x. = ( .g ` G ) |
|
| 3 | mhmmulg.t | |- .X. = ( .g ` H ) |
|
| 4 | fvoveq1 | |- ( n = 0 -> ( F ` ( n .x. X ) ) = ( F ` ( 0 .x. X ) ) ) |
|
| 5 | oveq1 | |- ( n = 0 -> ( n .X. ( F ` X ) ) = ( 0 .X. ( F ` X ) ) ) |
|
| 6 | 4 5 | eqeq12d | |- ( n = 0 -> ( ( F ` ( n .x. X ) ) = ( n .X. ( F ` X ) ) <-> ( F ` ( 0 .x. X ) ) = ( 0 .X. ( F ` X ) ) ) ) |
| 7 | 6 | imbi2d | |- ( n = 0 -> ( ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( n .x. X ) ) = ( n .X. ( F ` X ) ) ) <-> ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( 0 .x. X ) ) = ( 0 .X. ( F ` X ) ) ) ) ) |
| 8 | fvoveq1 | |- ( n = m -> ( F ` ( n .x. X ) ) = ( F ` ( m .x. X ) ) ) |
|
| 9 | oveq1 | |- ( n = m -> ( n .X. ( F ` X ) ) = ( m .X. ( F ` X ) ) ) |
|
| 10 | 8 9 | eqeq12d | |- ( n = m -> ( ( F ` ( n .x. X ) ) = ( n .X. ( F ` X ) ) <-> ( F ` ( m .x. X ) ) = ( m .X. ( F ` X ) ) ) ) |
| 11 | 10 | imbi2d | |- ( n = m -> ( ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( n .x. X ) ) = ( n .X. ( F ` X ) ) ) <-> ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( m .x. X ) ) = ( m .X. ( F ` X ) ) ) ) ) |
| 12 | fvoveq1 | |- ( n = ( m + 1 ) -> ( F ` ( n .x. X ) ) = ( F ` ( ( m + 1 ) .x. X ) ) ) |
|
| 13 | oveq1 | |- ( n = ( m + 1 ) -> ( n .X. ( F ` X ) ) = ( ( m + 1 ) .X. ( F ` X ) ) ) |
|
| 14 | 12 13 | eqeq12d | |- ( n = ( m + 1 ) -> ( ( F ` ( n .x. X ) ) = ( n .X. ( F ` X ) ) <-> ( F ` ( ( m + 1 ) .x. X ) ) = ( ( m + 1 ) .X. ( F ` X ) ) ) ) |
| 15 | 14 | imbi2d | |- ( n = ( m + 1 ) -> ( ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( n .x. X ) ) = ( n .X. ( F ` X ) ) ) <-> ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( ( m + 1 ) .x. X ) ) = ( ( m + 1 ) .X. ( F ` X ) ) ) ) ) |
| 16 | fvoveq1 | |- ( n = N -> ( F ` ( n .x. X ) ) = ( F ` ( N .x. X ) ) ) |
|
| 17 | oveq1 | |- ( n = N -> ( n .X. ( F ` X ) ) = ( N .X. ( F ` X ) ) ) |
|
| 18 | 16 17 | eqeq12d | |- ( n = N -> ( ( F ` ( n .x. X ) ) = ( n .X. ( F ` X ) ) <-> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) ) |
| 19 | 18 | imbi2d | |- ( n = N -> ( ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( n .x. X ) ) = ( n .X. ( F ` X ) ) ) <-> ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) ) ) |
| 20 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 21 | eqid | |- ( 0g ` H ) = ( 0g ` H ) |
|
| 22 | 20 21 | mhm0 | |- ( F e. ( G MndHom H ) -> ( F ` ( 0g ` G ) ) = ( 0g ` H ) ) |
| 23 | 22 | adantr | |- ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( 0g ` G ) ) = ( 0g ` H ) ) |
| 24 | 1 20 2 | mulg0 | |- ( X e. B -> ( 0 .x. X ) = ( 0g ` G ) ) |
| 25 | 24 | adantl | |- ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( 0 .x. X ) = ( 0g ` G ) ) |
| 26 | 25 | fveq2d | |- ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( 0 .x. X ) ) = ( F ` ( 0g ` G ) ) ) |
| 27 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 28 | 1 27 | mhmf | |- ( F e. ( G MndHom H ) -> F : B --> ( Base ` H ) ) |
| 29 | 28 | ffvelcdmda | |- ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` X ) e. ( Base ` H ) ) |
| 30 | 27 21 3 | mulg0 | |- ( ( F ` X ) e. ( Base ` H ) -> ( 0 .X. ( F ` X ) ) = ( 0g ` H ) ) |
| 31 | 29 30 | syl | |- ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( 0 .X. ( F ` X ) ) = ( 0g ` H ) ) |
| 32 | 23 26 31 | 3eqtr4d | |- ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( 0 .x. X ) ) = ( 0 .X. ( F ` X ) ) ) |
| 33 | oveq1 | |- ( ( F ` ( m .x. X ) ) = ( m .X. ( F ` X ) ) -> ( ( F ` ( m .x. X ) ) ( +g ` H ) ( F ` X ) ) = ( ( m .X. ( F ` X ) ) ( +g ` H ) ( F ` X ) ) ) |
|
| 34 | mhmrcl1 | |- ( F e. ( G MndHom H ) -> G e. Mnd ) |
|
| 35 | 34 | ad2antrr | |- ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> G e. Mnd ) |
| 36 | simpr | |- ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> m e. NN0 ) |
|
| 37 | simplr | |- ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> X e. B ) |
|
| 38 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 39 | 1 2 38 | mulgnn0p1 | |- ( ( G e. Mnd /\ m e. NN0 /\ X e. B ) -> ( ( m + 1 ) .x. X ) = ( ( m .x. X ) ( +g ` G ) X ) ) |
| 40 | 35 36 37 39 | syl3anc | |- ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> ( ( m + 1 ) .x. X ) = ( ( m .x. X ) ( +g ` G ) X ) ) |
| 41 | 40 | fveq2d | |- ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> ( F ` ( ( m + 1 ) .x. X ) ) = ( F ` ( ( m .x. X ) ( +g ` G ) X ) ) ) |
| 42 | simpll | |- ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> F e. ( G MndHom H ) ) |
|
| 43 | 34 | ad2antrr | |- ( ( ( F e. ( G MndHom H ) /\ m e. NN0 ) /\ X e. B ) -> G e. Mnd ) |
| 44 | simplr | |- ( ( ( F e. ( G MndHom H ) /\ m e. NN0 ) /\ X e. B ) -> m e. NN0 ) |
|
| 45 | simpr | |- ( ( ( F e. ( G MndHom H ) /\ m e. NN0 ) /\ X e. B ) -> X e. B ) |
|
| 46 | 1 2 43 44 45 | mulgnn0cld | |- ( ( ( F e. ( G MndHom H ) /\ m e. NN0 ) /\ X e. B ) -> ( m .x. X ) e. B ) |
| 47 | 46 | an32s | |- ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> ( m .x. X ) e. B ) |
| 48 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 49 | 1 38 48 | mhmlin | |- ( ( F e. ( G MndHom H ) /\ ( m .x. X ) e. B /\ X e. B ) -> ( F ` ( ( m .x. X ) ( +g ` G ) X ) ) = ( ( F ` ( m .x. X ) ) ( +g ` H ) ( F ` X ) ) ) |
| 50 | 42 47 37 49 | syl3anc | |- ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> ( F ` ( ( m .x. X ) ( +g ` G ) X ) ) = ( ( F ` ( m .x. X ) ) ( +g ` H ) ( F ` X ) ) ) |
| 51 | 41 50 | eqtrd | |- ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> ( F ` ( ( m + 1 ) .x. X ) ) = ( ( F ` ( m .x. X ) ) ( +g ` H ) ( F ` X ) ) ) |
| 52 | mhmrcl2 | |- ( F e. ( G MndHom H ) -> H e. Mnd ) |
|
| 53 | 52 | ad2antrr | |- ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> H e. Mnd ) |
| 54 | 29 | adantr | |- ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> ( F ` X ) e. ( Base ` H ) ) |
| 55 | 27 3 48 | mulgnn0p1 | |- ( ( H e. Mnd /\ m e. NN0 /\ ( F ` X ) e. ( Base ` H ) ) -> ( ( m + 1 ) .X. ( F ` X ) ) = ( ( m .X. ( F ` X ) ) ( +g ` H ) ( F ` X ) ) ) |
| 56 | 53 36 54 55 | syl3anc | |- ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> ( ( m + 1 ) .X. ( F ` X ) ) = ( ( m .X. ( F ` X ) ) ( +g ` H ) ( F ` X ) ) ) |
| 57 | 51 56 | eqeq12d | |- ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> ( ( F ` ( ( m + 1 ) .x. X ) ) = ( ( m + 1 ) .X. ( F ` X ) ) <-> ( ( F ` ( m .x. X ) ) ( +g ` H ) ( F ` X ) ) = ( ( m .X. ( F ` X ) ) ( +g ` H ) ( F ` X ) ) ) ) |
| 58 | 33 57 | imbitrrid | |- ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> ( ( F ` ( m .x. X ) ) = ( m .X. ( F ` X ) ) -> ( F ` ( ( m + 1 ) .x. X ) ) = ( ( m + 1 ) .X. ( F ` X ) ) ) ) |
| 59 | 58 | expcom | |- ( m e. NN0 -> ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( ( F ` ( m .x. X ) ) = ( m .X. ( F ` X ) ) -> ( F ` ( ( m + 1 ) .x. X ) ) = ( ( m + 1 ) .X. ( F ` X ) ) ) ) ) |
| 60 | 59 | a2d | |- ( m e. NN0 -> ( ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( m .x. X ) ) = ( m .X. ( F ` X ) ) ) -> ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( ( m + 1 ) .x. X ) ) = ( ( m + 1 ) .X. ( F ` X ) ) ) ) ) |
| 61 | 7 11 15 19 32 60 | nn0ind | |- ( N e. NN0 -> ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) ) |
| 62 | 61 | 3impib | |- ( ( N e. NN0 /\ F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) |
| 63 | 62 | 3com12 | |- ( ( F e. ( G MndHom H ) /\ N e. NN0 /\ X e. B ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) |