This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group homomorphism preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmmulg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ghmmulg.s | ⊢ · = ( .g ‘ 𝐺 ) | ||
| ghmmulg.t | ⊢ × = ( .g ‘ 𝐻 ) | ||
| Assertion | ghmmulg | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmmulg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ghmmulg.s | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | ghmmulg.t | ⊢ × = ( .g ‘ 𝐻 ) | |
| 4 | ghmmhm | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ) | |
| 5 | 1 2 3 | mhmmulg | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |
| 6 | 4 5 | syl3an1 | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |
| 7 | 6 | 3expa | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |
| 8 | 7 | an32s | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |
| 9 | 8 | 3adantl2 | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |
| 10 | simpl1 | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) | |
| 11 | 10 4 | syl | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ) |
| 12 | nnnn0 | ⊢ ( - 𝑁 ∈ ℕ → - 𝑁 ∈ ℕ0 ) | |
| 13 | 12 | ad2antll | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - 𝑁 ∈ ℕ0 ) |
| 14 | simpl3 | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝑋 ∈ 𝐵 ) | |
| 15 | 1 2 3 | mhmmulg | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ - 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( - 𝑁 · 𝑋 ) ) = ( - 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |
| 16 | 11 13 14 15 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐹 ‘ ( - 𝑁 · 𝑋 ) ) = ( - 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |
| 17 | 16 | fveq2d | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ ( - 𝑁 · 𝑋 ) ) ) = ( ( invg ‘ 𝐻 ) ‘ ( - 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 18 | ghmgrp1 | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐺 ∈ Grp ) | |
| 19 | 10 18 | syl | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝐺 ∈ Grp ) |
| 20 | nnz | ⊢ ( - 𝑁 ∈ ℕ → - 𝑁 ∈ ℤ ) | |
| 21 | 20 | ad2antll | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - 𝑁 ∈ ℤ ) |
| 22 | 1 2 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ - 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑁 · 𝑋 ) ∈ 𝐵 ) |
| 23 | 19 21 14 22 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( - 𝑁 · 𝑋 ) ∈ 𝐵 ) |
| 24 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 25 | eqid | ⊢ ( invg ‘ 𝐻 ) = ( invg ‘ 𝐻 ) | |
| 26 | 1 24 25 | ghminv | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ ( - 𝑁 · 𝑋 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁 · 𝑋 ) ) ) = ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ ( - 𝑁 · 𝑋 ) ) ) ) |
| 27 | 10 23 26 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁 · 𝑋 ) ) ) = ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ ( - 𝑁 · 𝑋 ) ) ) ) |
| 28 | ghmgrp2 | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐻 ∈ Grp ) | |
| 29 | 10 28 | syl | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝐻 ∈ Grp ) |
| 30 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 31 | 1 30 | ghmf | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) |
| 32 | 10 31 | syl | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) |
| 33 | 32 14 | ffvelcdmd | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐻 ) ) |
| 34 | 30 3 25 | mulgneg | ⊢ ( ( 𝐻 ∈ Grp ∧ - 𝑁 ∈ ℤ ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐻 ) ) → ( - - 𝑁 × ( 𝐹 ‘ 𝑋 ) ) = ( ( invg ‘ 𝐻 ) ‘ ( - 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 35 | 29 21 33 34 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( - - 𝑁 × ( 𝐹 ‘ 𝑋 ) ) = ( ( invg ‘ 𝐻 ) ‘ ( - 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 36 | 17 27 35 | 3eqtr4d | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁 · 𝑋 ) ) ) = ( - - 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |
| 37 | 1 2 24 | mulgneg | ⊢ ( ( 𝐺 ∈ Grp ∧ - 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - - 𝑁 · 𝑋 ) = ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁 · 𝑋 ) ) ) |
| 38 | 19 21 14 37 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( - - 𝑁 · 𝑋 ) = ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁 · 𝑋 ) ) ) |
| 39 | simprl | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝑁 ∈ ℝ ) | |
| 40 | 39 | recnd | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝑁 ∈ ℂ ) |
| 41 | 40 | negnegd | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - - 𝑁 = 𝑁 ) |
| 42 | 41 | oveq1d | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( - - 𝑁 · 𝑋 ) = ( 𝑁 · 𝑋 ) ) |
| 43 | 38 42 | eqtr3d | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁 · 𝑋 ) ) = ( 𝑁 · 𝑋 ) ) |
| 44 | 43 | fveq2d | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁 · 𝑋 ) ) ) = ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) ) |
| 45 | 36 44 | eqtr3d | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( - - 𝑁 × ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) ) |
| 46 | 41 | oveq1d | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( - - 𝑁 × ( 𝐹 ‘ 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |
| 47 | 45 46 | eqtr3d | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |
| 48 | simp2 | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → 𝑁 ∈ ℤ ) | |
| 49 | elznn0nn | ⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ) | |
| 50 | 48 49 | sylib | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ) |
| 51 | 9 47 50 | mpjaodan | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |