This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elznn0nn | |- ( N e. ZZ <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz | |- ( N e. ZZ <-> ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) ) |
|
| 2 | andi | |- ( ( N e. RR /\ ( ( N = 0 \/ N e. NN ) \/ -u N e. NN ) ) <-> ( ( N e. RR /\ ( N = 0 \/ N e. NN ) ) \/ ( N e. RR /\ -u N e. NN ) ) ) |
|
| 3 | df-3or | |- ( ( N = 0 \/ N e. NN \/ -u N e. NN ) <-> ( ( N = 0 \/ N e. NN ) \/ -u N e. NN ) ) |
|
| 4 | 3 | anbi2i | |- ( ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) <-> ( N e. RR /\ ( ( N = 0 \/ N e. NN ) \/ -u N e. NN ) ) ) |
| 5 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 6 | 5 | pm4.71ri | |- ( N e. NN0 <-> ( N e. RR /\ N e. NN0 ) ) |
| 7 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 8 | orcom | |- ( ( N e. NN \/ N = 0 ) <-> ( N = 0 \/ N e. NN ) ) |
|
| 9 | 7 8 | bitri | |- ( N e. NN0 <-> ( N = 0 \/ N e. NN ) ) |
| 10 | 9 | anbi2i | |- ( ( N e. RR /\ N e. NN0 ) <-> ( N e. RR /\ ( N = 0 \/ N e. NN ) ) ) |
| 11 | 6 10 | bitri | |- ( N e. NN0 <-> ( N e. RR /\ ( N = 0 \/ N e. NN ) ) ) |
| 12 | 11 | orbi1i | |- ( ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) <-> ( ( N e. RR /\ ( N = 0 \/ N e. NN ) ) \/ ( N e. RR /\ -u N e. NN ) ) ) |
| 13 | 2 4 12 | 3bitr4i | |- ( ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
| 14 | 1 13 | bitri | |- ( N e. ZZ <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |