This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a bounded-above set of integers is a member of the set. (This version of suprzcl avoids ax-pre-sup .) (Contributed by Mario Carneiro, 21-Apr-2015) (Revised by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suprzcl2 | |- ( ( A C_ ZZ /\ A =/= (/) /\ E. x e. ZZ A. y e. A y <_ x ) -> sup ( A , RR , < ) e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zsupss | |- ( ( A C_ ZZ /\ A =/= (/) /\ E. x e. ZZ A. y e. A y <_ x ) -> E. x e. A ( A. y e. A -. x < y /\ A. y e. RR ( y < x -> E. z e. A y < z ) ) ) |
|
| 2 | ssel2 | |- ( ( A C_ ZZ /\ x e. A ) -> x e. ZZ ) |
|
| 3 | 2 | zred | |- ( ( A C_ ZZ /\ x e. A ) -> x e. RR ) |
| 4 | ltso | |- < Or RR |
|
| 5 | 4 | a1i | |- ( T. -> < Or RR ) |
| 6 | 5 | eqsup | |- ( T. -> ( ( x e. RR /\ A. y e. A -. x < y /\ A. y e. RR ( y < x -> E. z e. A y < z ) ) -> sup ( A , RR , < ) = x ) ) |
| 7 | 6 | mptru | |- ( ( x e. RR /\ A. y e. A -. x < y /\ A. y e. RR ( y < x -> E. z e. A y < z ) ) -> sup ( A , RR , < ) = x ) |
| 8 | 7 | 3expib | |- ( x e. RR -> ( ( A. y e. A -. x < y /\ A. y e. RR ( y < x -> E. z e. A y < z ) ) -> sup ( A , RR , < ) = x ) ) |
| 9 | 3 8 | syl | |- ( ( A C_ ZZ /\ x e. A ) -> ( ( A. y e. A -. x < y /\ A. y e. RR ( y < x -> E. z e. A y < z ) ) -> sup ( A , RR , < ) = x ) ) |
| 10 | simpr | |- ( ( A C_ ZZ /\ x e. A ) -> x e. A ) |
|
| 11 | eleq1 | |- ( sup ( A , RR , < ) = x -> ( sup ( A , RR , < ) e. A <-> x e. A ) ) |
|
| 12 | 10 11 | syl5ibrcom | |- ( ( A C_ ZZ /\ x e. A ) -> ( sup ( A , RR , < ) = x -> sup ( A , RR , < ) e. A ) ) |
| 13 | 9 12 | syld | |- ( ( A C_ ZZ /\ x e. A ) -> ( ( A. y e. A -. x < y /\ A. y e. RR ( y < x -> E. z e. A y < z ) ) -> sup ( A , RR , < ) e. A ) ) |
| 14 | 13 | rexlimdva | |- ( A C_ ZZ -> ( E. x e. A ( A. y e. A -. x < y /\ A. y e. RR ( y < x -> E. z e. A y < z ) ) -> sup ( A , RR , < ) e. A ) ) |
| 15 | 14 | 3ad2ant1 | |- ( ( A C_ ZZ /\ A =/= (/) /\ E. x e. ZZ A. y e. A y <_ x ) -> ( E. x e. A ( A. y e. A -. x < y /\ A. y e. RR ( y < x -> E. z e. A y < z ) ) -> sup ( A , RR , < ) e. A ) ) |
| 16 | 1 15 | mpd | |- ( ( A C_ ZZ /\ A =/= (/) /\ E. x e. ZZ A. y e. A y <_ x ) -> sup ( A , RR , < ) e. A ) |