This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of the group element order. (Contributed by Stefan O'Rear, 5-Sep-2015) (Proof shortened by AV, 5-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl.1 | |- X = ( Base ` G ) |
|
| odcl.2 | |- O = ( od ` G ) |
||
| Assertion | odf | |- O : X --> NN0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | |- X = ( Base ` G ) |
|
| 2 | odcl.2 | |- O = ( od ` G ) |
|
| 3 | c0ex | |- 0 e. _V |
|
| 4 | ltso | |- < Or RR |
|
| 5 | 4 | infex | |- inf ( w , RR , < ) e. _V |
| 6 | 3 5 | ifex | |- if ( w = (/) , 0 , inf ( w , RR , < ) ) e. _V |
| 7 | 6 | csbex | |- [_ { z e. NN | ( z ( .g ` G ) y ) = ( 0g ` G ) } / w ]_ if ( w = (/) , 0 , inf ( w , RR , < ) ) e. _V |
| 8 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 9 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 10 | 1 8 9 2 | odfval | |- O = ( y e. X |-> [_ { z e. NN | ( z ( .g ` G ) y ) = ( 0g ` G ) } / w ]_ if ( w = (/) , 0 , inf ( w , RR , < ) ) ) |
| 11 | 7 10 | fnmpti | |- O Fn X |
| 12 | 1 2 | odcl | |- ( x e. X -> ( O ` x ) e. NN0 ) |
| 13 | 12 | rgen | |- A. x e. X ( O ` x ) e. NN0 |
| 14 | ffnfv | |- ( O : X --> NN0 <-> ( O Fn X /\ A. x e. X ( O ` x ) e. NN0 ) ) |
|
| 15 | 11 13 14 | mpbir2an | |- O : X --> NN0 |