This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of all elements of finite order forms a subgroup of any abelian group, called the torsion subgroup. (Contributed by Mario Carneiro, 20-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | torsubg.1 | |- O = ( od ` G ) |
|
| Assertion | torsubg | |- ( G e. Abel -> ( `' O " NN ) e. ( SubGrp ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | torsubg.1 | |- O = ( od ` G ) |
|
| 2 | cnvimass | |- ( `' O " NN ) C_ dom O |
|
| 3 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 4 | 3 1 | odf | |- O : ( Base ` G ) --> NN0 |
| 5 | 4 | fdmi | |- dom O = ( Base ` G ) |
| 6 | 2 5 | sseqtri | |- ( `' O " NN ) C_ ( Base ` G ) |
| 7 | 6 | a1i | |- ( G e. Abel -> ( `' O " NN ) C_ ( Base ` G ) ) |
| 8 | ablgrp | |- ( G e. Abel -> G e. Grp ) |
|
| 9 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 10 | 3 9 | grpidcl | |- ( G e. Grp -> ( 0g ` G ) e. ( Base ` G ) ) |
| 11 | 8 10 | syl | |- ( G e. Abel -> ( 0g ` G ) e. ( Base ` G ) ) |
| 12 | 1 9 | od1 | |- ( G e. Grp -> ( O ` ( 0g ` G ) ) = 1 ) |
| 13 | 8 12 | syl | |- ( G e. Abel -> ( O ` ( 0g ` G ) ) = 1 ) |
| 14 | 1nn | |- 1 e. NN |
|
| 15 | 13 14 | eqeltrdi | |- ( G e. Abel -> ( O ` ( 0g ` G ) ) e. NN ) |
| 16 | ffn | |- ( O : ( Base ` G ) --> NN0 -> O Fn ( Base ` G ) ) |
|
| 17 | 4 16 | ax-mp | |- O Fn ( Base ` G ) |
| 18 | elpreima | |- ( O Fn ( Base ` G ) -> ( ( 0g ` G ) e. ( `' O " NN ) <-> ( ( 0g ` G ) e. ( Base ` G ) /\ ( O ` ( 0g ` G ) ) e. NN ) ) ) |
|
| 19 | 17 18 | ax-mp | |- ( ( 0g ` G ) e. ( `' O " NN ) <-> ( ( 0g ` G ) e. ( Base ` G ) /\ ( O ` ( 0g ` G ) ) e. NN ) ) |
| 20 | 11 15 19 | sylanbrc | |- ( G e. Abel -> ( 0g ` G ) e. ( `' O " NN ) ) |
| 21 | 20 | ne0d | |- ( G e. Abel -> ( `' O " NN ) =/= (/) ) |
| 22 | 8 | ad2antrr | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> G e. Grp ) |
| 23 | 6 | sseli | |- ( x e. ( `' O " NN ) -> x e. ( Base ` G ) ) |
| 24 | 23 | ad2antlr | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> x e. ( Base ` G ) ) |
| 25 | 6 | sseli | |- ( y e. ( `' O " NN ) -> y e. ( Base ` G ) ) |
| 26 | 25 | adantl | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> y e. ( Base ` G ) ) |
| 27 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 28 | 3 27 | grpcl | |- ( ( G e. Grp /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( x ( +g ` G ) y ) e. ( Base ` G ) ) |
| 29 | 22 24 26 28 | syl3anc | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( x ( +g ` G ) y ) e. ( Base ` G ) ) |
| 30 | 0nnn | |- -. 0 e. NN |
|
| 31 | 3 1 | odcl | |- ( x e. ( Base ` G ) -> ( O ` x ) e. NN0 ) |
| 32 | 24 31 | syl | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( O ` x ) e. NN0 ) |
| 33 | 32 | nn0zd | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( O ` x ) e. ZZ ) |
| 34 | 3 1 | odcl | |- ( y e. ( Base ` G ) -> ( O ` y ) e. NN0 ) |
| 35 | 26 34 | syl | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( O ` y ) e. NN0 ) |
| 36 | 35 | nn0zd | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( O ` y ) e. ZZ ) |
| 37 | 33 36 | gcdcld | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( ( O ` x ) gcd ( O ` y ) ) e. NN0 ) |
| 38 | 37 | nn0cnd | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( ( O ` x ) gcd ( O ` y ) ) e. CC ) |
| 39 | 38 | mul02d | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( 0 x. ( ( O ` x ) gcd ( O ` y ) ) ) = 0 ) |
| 40 | 39 | breq1d | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( ( 0 x. ( ( O ` x ) gcd ( O ` y ) ) ) || ( ( O ` x ) x. ( O ` y ) ) <-> 0 || ( ( O ` x ) x. ( O ` y ) ) ) ) |
| 41 | 33 36 | zmulcld | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( ( O ` x ) x. ( O ` y ) ) e. ZZ ) |
| 42 | 0dvds | |- ( ( ( O ` x ) x. ( O ` y ) ) e. ZZ -> ( 0 || ( ( O ` x ) x. ( O ` y ) ) <-> ( ( O ` x ) x. ( O ` y ) ) = 0 ) ) |
|
| 43 | 41 42 | syl | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( 0 || ( ( O ` x ) x. ( O ` y ) ) <-> ( ( O ` x ) x. ( O ` y ) ) = 0 ) ) |
| 44 | 40 43 | bitrd | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( ( 0 x. ( ( O ` x ) gcd ( O ` y ) ) ) || ( ( O ` x ) x. ( O ` y ) ) <-> ( ( O ` x ) x. ( O ` y ) ) = 0 ) ) |
| 45 | elpreima | |- ( O Fn ( Base ` G ) -> ( x e. ( `' O " NN ) <-> ( x e. ( Base ` G ) /\ ( O ` x ) e. NN ) ) ) |
|
| 46 | 17 45 | ax-mp | |- ( x e. ( `' O " NN ) <-> ( x e. ( Base ` G ) /\ ( O ` x ) e. NN ) ) |
| 47 | 46 | simprbi | |- ( x e. ( `' O " NN ) -> ( O ` x ) e. NN ) |
| 48 | 47 | ad2antlr | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( O ` x ) e. NN ) |
| 49 | elpreima | |- ( O Fn ( Base ` G ) -> ( y e. ( `' O " NN ) <-> ( y e. ( Base ` G ) /\ ( O ` y ) e. NN ) ) ) |
|
| 50 | 17 49 | ax-mp | |- ( y e. ( `' O " NN ) <-> ( y e. ( Base ` G ) /\ ( O ` y ) e. NN ) ) |
| 51 | 50 | simprbi | |- ( y e. ( `' O " NN ) -> ( O ` y ) e. NN ) |
| 52 | 51 | adantl | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( O ` y ) e. NN ) |
| 53 | 48 52 | nnmulcld | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( ( O ` x ) x. ( O ` y ) ) e. NN ) |
| 54 | eleq1 | |- ( ( ( O ` x ) x. ( O ` y ) ) = 0 -> ( ( ( O ` x ) x. ( O ` y ) ) e. NN <-> 0 e. NN ) ) |
|
| 55 | 53 54 | syl5ibcom | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( ( ( O ` x ) x. ( O ` y ) ) = 0 -> 0 e. NN ) ) |
| 56 | 44 55 | sylbid | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( ( 0 x. ( ( O ` x ) gcd ( O ` y ) ) ) || ( ( O ` x ) x. ( O ` y ) ) -> 0 e. NN ) ) |
| 57 | 30 56 | mtoi | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> -. ( 0 x. ( ( O ` x ) gcd ( O ` y ) ) ) || ( ( O ` x ) x. ( O ` y ) ) ) |
| 58 | simpll | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> G e. Abel ) |
|
| 59 | 1 3 27 | odadd1 | |- ( ( G e. Abel /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( ( O ` ( x ( +g ` G ) y ) ) x. ( ( O ` x ) gcd ( O ` y ) ) ) || ( ( O ` x ) x. ( O ` y ) ) ) |
| 60 | 58 24 26 59 | syl3anc | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( ( O ` ( x ( +g ` G ) y ) ) x. ( ( O ` x ) gcd ( O ` y ) ) ) || ( ( O ` x ) x. ( O ` y ) ) ) |
| 61 | oveq1 | |- ( ( O ` ( x ( +g ` G ) y ) ) = 0 -> ( ( O ` ( x ( +g ` G ) y ) ) x. ( ( O ` x ) gcd ( O ` y ) ) ) = ( 0 x. ( ( O ` x ) gcd ( O ` y ) ) ) ) |
|
| 62 | 61 | breq1d | |- ( ( O ` ( x ( +g ` G ) y ) ) = 0 -> ( ( ( O ` ( x ( +g ` G ) y ) ) x. ( ( O ` x ) gcd ( O ` y ) ) ) || ( ( O ` x ) x. ( O ` y ) ) <-> ( 0 x. ( ( O ` x ) gcd ( O ` y ) ) ) || ( ( O ` x ) x. ( O ` y ) ) ) ) |
| 63 | 60 62 | syl5ibcom | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( ( O ` ( x ( +g ` G ) y ) ) = 0 -> ( 0 x. ( ( O ` x ) gcd ( O ` y ) ) ) || ( ( O ` x ) x. ( O ` y ) ) ) ) |
| 64 | 57 63 | mtod | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> -. ( O ` ( x ( +g ` G ) y ) ) = 0 ) |
| 65 | 3 1 | odcl | |- ( ( x ( +g ` G ) y ) e. ( Base ` G ) -> ( O ` ( x ( +g ` G ) y ) ) e. NN0 ) |
| 66 | 29 65 | syl | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( O ` ( x ( +g ` G ) y ) ) e. NN0 ) |
| 67 | elnn0 | |- ( ( O ` ( x ( +g ` G ) y ) ) e. NN0 <-> ( ( O ` ( x ( +g ` G ) y ) ) e. NN \/ ( O ` ( x ( +g ` G ) y ) ) = 0 ) ) |
|
| 68 | 66 67 | sylib | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( ( O ` ( x ( +g ` G ) y ) ) e. NN \/ ( O ` ( x ( +g ` G ) y ) ) = 0 ) ) |
| 69 | 68 | ord | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( -. ( O ` ( x ( +g ` G ) y ) ) e. NN -> ( O ` ( x ( +g ` G ) y ) ) = 0 ) ) |
| 70 | 64 69 | mt3d | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( O ` ( x ( +g ` G ) y ) ) e. NN ) |
| 71 | elpreima | |- ( O Fn ( Base ` G ) -> ( ( x ( +g ` G ) y ) e. ( `' O " NN ) <-> ( ( x ( +g ` G ) y ) e. ( Base ` G ) /\ ( O ` ( x ( +g ` G ) y ) ) e. NN ) ) ) |
|
| 72 | 17 71 | ax-mp | |- ( ( x ( +g ` G ) y ) e. ( `' O " NN ) <-> ( ( x ( +g ` G ) y ) e. ( Base ` G ) /\ ( O ` ( x ( +g ` G ) y ) ) e. NN ) ) |
| 73 | 29 70 72 | sylanbrc | |- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( x ( +g ` G ) y ) e. ( `' O " NN ) ) |
| 74 | 73 | ralrimiva | |- ( ( G e. Abel /\ x e. ( `' O " NN ) ) -> A. y e. ( `' O " NN ) ( x ( +g ` G ) y ) e. ( `' O " NN ) ) |
| 75 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 76 | 3 75 | grpinvcl | |- ( ( G e. Grp /\ x e. ( Base ` G ) ) -> ( ( invg ` G ) ` x ) e. ( Base ` G ) ) |
| 77 | 8 23 76 | syl2an | |- ( ( G e. Abel /\ x e. ( `' O " NN ) ) -> ( ( invg ` G ) ` x ) e. ( Base ` G ) ) |
| 78 | 1 75 3 | odinv | |- ( ( G e. Grp /\ x e. ( Base ` G ) ) -> ( O ` ( ( invg ` G ) ` x ) ) = ( O ` x ) ) |
| 79 | 8 23 78 | syl2an | |- ( ( G e. Abel /\ x e. ( `' O " NN ) ) -> ( O ` ( ( invg ` G ) ` x ) ) = ( O ` x ) ) |
| 80 | 47 | adantl | |- ( ( G e. Abel /\ x e. ( `' O " NN ) ) -> ( O ` x ) e. NN ) |
| 81 | 79 80 | eqeltrd | |- ( ( G e. Abel /\ x e. ( `' O " NN ) ) -> ( O ` ( ( invg ` G ) ` x ) ) e. NN ) |
| 82 | elpreima | |- ( O Fn ( Base ` G ) -> ( ( ( invg ` G ) ` x ) e. ( `' O " NN ) <-> ( ( ( invg ` G ) ` x ) e. ( Base ` G ) /\ ( O ` ( ( invg ` G ) ` x ) ) e. NN ) ) ) |
|
| 83 | 17 82 | ax-mp | |- ( ( ( invg ` G ) ` x ) e. ( `' O " NN ) <-> ( ( ( invg ` G ) ` x ) e. ( Base ` G ) /\ ( O ` ( ( invg ` G ) ` x ) ) e. NN ) ) |
| 84 | 77 81 83 | sylanbrc | |- ( ( G e. Abel /\ x e. ( `' O " NN ) ) -> ( ( invg ` G ) ` x ) e. ( `' O " NN ) ) |
| 85 | 74 84 | jca | |- ( ( G e. Abel /\ x e. ( `' O " NN ) ) -> ( A. y e. ( `' O " NN ) ( x ( +g ` G ) y ) e. ( `' O " NN ) /\ ( ( invg ` G ) ` x ) e. ( `' O " NN ) ) ) |
| 86 | 85 | ralrimiva | |- ( G e. Abel -> A. x e. ( `' O " NN ) ( A. y e. ( `' O " NN ) ( x ( +g ` G ) y ) e. ( `' O " NN ) /\ ( ( invg ` G ) ` x ) e. ( `' O " NN ) ) ) |
| 87 | 3 27 75 | issubg2 | |- ( G e. Grp -> ( ( `' O " NN ) e. ( SubGrp ` G ) <-> ( ( `' O " NN ) C_ ( Base ` G ) /\ ( `' O " NN ) =/= (/) /\ A. x e. ( `' O " NN ) ( A. y e. ( `' O " NN ) ( x ( +g ` G ) y ) e. ( `' O " NN ) /\ ( ( invg ` G ) ` x ) e. ( `' O " NN ) ) ) ) ) |
| 88 | 8 87 | syl | |- ( G e. Abel -> ( ( `' O " NN ) e. ( SubGrp ` G ) <-> ( ( `' O " NN ) C_ ( Base ` G ) /\ ( `' O " NN ) =/= (/) /\ A. x e. ( `' O " NN ) ( A. y e. ( `' O " NN ) ( x ( +g ` G ) y ) e. ( `' O " NN ) /\ ( ( invg ` G ) ` x ) e. ( `' O " NN ) ) ) ) ) |
| 89 | 7 21 86 88 | mpbir3and | |- ( G e. Abel -> ( `' O " NN ) e. ( SubGrp ` G ) ) |