This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Fundamental Theorem of Calculus, part one. The function formed by varying the right endpoint of an integral is differentiable at C with derivative F ( C ) if the original function is continuous at C . This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 1-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ftc1.g | |- G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t ) |
|
| ftc1.a | |- ( ph -> A e. RR ) |
||
| ftc1.b | |- ( ph -> B e. RR ) |
||
| ftc1.le | |- ( ph -> A <_ B ) |
||
| ftc1.s | |- ( ph -> ( A (,) B ) C_ D ) |
||
| ftc1.d | |- ( ph -> D C_ RR ) |
||
| ftc1.i | |- ( ph -> F e. L^1 ) |
||
| ftc1.c | |- ( ph -> C e. ( A (,) B ) ) |
||
| ftc1.f | |- ( ph -> F e. ( ( K CnP L ) ` C ) ) |
||
| ftc1.j | |- J = ( L |`t RR ) |
||
| ftc1.k | |- K = ( L |`t D ) |
||
| ftc1.l | |- L = ( TopOpen ` CCfld ) |
||
| Assertion | ftc1 | |- ( ph -> C ( RR _D G ) ( F ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftc1.g | |- G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t ) |
|
| 2 | ftc1.a | |- ( ph -> A e. RR ) |
|
| 3 | ftc1.b | |- ( ph -> B e. RR ) |
|
| 4 | ftc1.le | |- ( ph -> A <_ B ) |
|
| 5 | ftc1.s | |- ( ph -> ( A (,) B ) C_ D ) |
|
| 6 | ftc1.d | |- ( ph -> D C_ RR ) |
|
| 7 | ftc1.i | |- ( ph -> F e. L^1 ) |
|
| 8 | ftc1.c | |- ( ph -> C e. ( A (,) B ) ) |
|
| 9 | ftc1.f | |- ( ph -> F e. ( ( K CnP L ) ` C ) ) |
|
| 10 | ftc1.j | |- J = ( L |`t RR ) |
|
| 11 | ftc1.k | |- K = ( L |`t D ) |
|
| 12 | ftc1.l | |- L = ( TopOpen ` CCfld ) |
|
| 13 | 12 | tgioo2 | |- ( topGen ` ran (,) ) = ( L |`t RR ) |
| 14 | 10 13 | eqtr4i | |- J = ( topGen ` ran (,) ) |
| 15 | retop | |- ( topGen ` ran (,) ) e. Top |
|
| 16 | 14 15 | eqeltri | |- J e. Top |
| 17 | 16 | a1i | |- ( ph -> J e. Top ) |
| 18 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 19 | 2 3 18 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |
| 20 | iooretop | |- ( A (,) B ) e. ( topGen ` ran (,) ) |
|
| 21 | 20 14 | eleqtrri | |- ( A (,) B ) e. J |
| 22 | 21 | a1i | |- ( ph -> ( A (,) B ) e. J ) |
| 23 | ioossicc | |- ( A (,) B ) C_ ( A [,] B ) |
|
| 24 | 23 | a1i | |- ( ph -> ( A (,) B ) C_ ( A [,] B ) ) |
| 25 | uniretop | |- RR = U. ( topGen ` ran (,) ) |
|
| 26 | 14 | unieqi | |- U. J = U. ( topGen ` ran (,) ) |
| 27 | 25 26 | eqtr4i | |- RR = U. J |
| 28 | 27 | ssntr | |- ( ( ( J e. Top /\ ( A [,] B ) C_ RR ) /\ ( ( A (,) B ) e. J /\ ( A (,) B ) C_ ( A [,] B ) ) ) -> ( A (,) B ) C_ ( ( int ` J ) ` ( A [,] B ) ) ) |
| 29 | 17 19 22 24 28 | syl22anc | |- ( ph -> ( A (,) B ) C_ ( ( int ` J ) ` ( A [,] B ) ) ) |
| 30 | 29 8 | sseldd | |- ( ph -> C e. ( ( int ` J ) ` ( A [,] B ) ) ) |
| 31 | eqid | |- ( z e. ( ( A [,] B ) \ { C } ) |-> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) = ( z e. ( ( A [,] B ) \ { C } ) |-> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) |
|
| 32 | 1 2 3 4 5 6 7 8 9 10 11 12 31 | ftc1lem6 | |- ( ph -> ( F ` C ) e. ( ( z e. ( ( A [,] B ) \ { C } ) |-> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) limCC C ) ) |
| 33 | ax-resscn | |- RR C_ CC |
|
| 34 | 33 | a1i | |- ( ph -> RR C_ CC ) |
| 35 | 1 2 3 4 5 6 7 8 9 10 11 12 | ftc1lem3 | |- ( ph -> F : D --> CC ) |
| 36 | 1 2 3 4 5 6 7 35 | ftc1lem2 | |- ( ph -> G : ( A [,] B ) --> CC ) |
| 37 | 10 12 31 34 36 19 | eldv | |- ( ph -> ( C ( RR _D G ) ( F ` C ) <-> ( C e. ( ( int ` J ) ` ( A [,] B ) ) /\ ( F ` C ) e. ( ( z e. ( ( A [,] B ) \ { C } ) |-> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) limCC C ) ) ) ) |
| 38 | 30 32 37 | mpbir2and | |- ( ph -> C ( RR _D G ) ( F ` C ) ) |