This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ftc1 . (Contributed by Mario Carneiro, 12-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ftc1.g | |- G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t ) |
|
| ftc1.a | |- ( ph -> A e. RR ) |
||
| ftc1.b | |- ( ph -> B e. RR ) |
||
| ftc1.le | |- ( ph -> A <_ B ) |
||
| ftc1.s | |- ( ph -> ( A (,) B ) C_ D ) |
||
| ftc1.d | |- ( ph -> D C_ RR ) |
||
| ftc1.i | |- ( ph -> F e. L^1 ) |
||
| ftc1a.f | |- ( ph -> F : D --> CC ) |
||
| Assertion | ftc1lem2 | |- ( ph -> G : ( A [,] B ) --> CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftc1.g | |- G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t ) |
|
| 2 | ftc1.a | |- ( ph -> A e. RR ) |
|
| 3 | ftc1.b | |- ( ph -> B e. RR ) |
|
| 4 | ftc1.le | |- ( ph -> A <_ B ) |
|
| 5 | ftc1.s | |- ( ph -> ( A (,) B ) C_ D ) |
|
| 6 | ftc1.d | |- ( ph -> D C_ RR ) |
|
| 7 | ftc1.i | |- ( ph -> F e. L^1 ) |
|
| 8 | ftc1a.f | |- ( ph -> F : D --> CC ) |
|
| 9 | fvexd | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ t e. ( A (,) x ) ) -> ( F ` t ) e. _V ) |
|
| 10 | 3 | adantr | |- ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR ) |
| 11 | 10 | rexrd | |- ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR* ) |
| 12 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
|
| 13 | 2 3 12 | syl2anc | |- ( ph -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
| 14 | 13 | biimpa | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( x e. RR /\ A <_ x /\ x <_ B ) ) |
| 15 | 14 | simp3d | |- ( ( ph /\ x e. ( A [,] B ) ) -> x <_ B ) |
| 16 | iooss2 | |- ( ( B e. RR* /\ x <_ B ) -> ( A (,) x ) C_ ( A (,) B ) ) |
|
| 17 | 11 15 16 | syl2anc | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( A (,) x ) C_ ( A (,) B ) ) |
| 18 | 5 | adantr | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( A (,) B ) C_ D ) |
| 19 | 17 18 | sstrd | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( A (,) x ) C_ D ) |
| 20 | ioombl | |- ( A (,) x ) e. dom vol |
|
| 21 | 20 | a1i | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( A (,) x ) e. dom vol ) |
| 22 | fvexd | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ t e. D ) -> ( F ` t ) e. _V ) |
|
| 23 | 8 | feqmptd | |- ( ph -> F = ( t e. D |-> ( F ` t ) ) ) |
| 24 | 23 7 | eqeltrrd | |- ( ph -> ( t e. D |-> ( F ` t ) ) e. L^1 ) |
| 25 | 24 | adantr | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( t e. D |-> ( F ` t ) ) e. L^1 ) |
| 26 | 19 21 22 25 | iblss | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( t e. ( A (,) x ) |-> ( F ` t ) ) e. L^1 ) |
| 27 | 9 26 | itgcl | |- ( ( ph /\ x e. ( A [,] B ) ) -> S. ( A (,) x ) ( F ` t ) _d t e. CC ) |
| 28 | 27 1 | fmptd | |- ( ph -> G : ( A [,] B ) --> CC ) |