This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the divisor function at a prime power. (Contributed by Mario Carneiro, 17-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sgmppw | |- ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) -> ( A sigma ( P ^ N ) ) = sum_ k e. ( 0 ... N ) ( ( P ^c A ) ^ k ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) -> A e. CC ) |
|
| 2 | simp2 | |- ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) -> P e. Prime ) |
|
| 3 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 4 | 2 3 | syl | |- ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) -> P e. NN ) |
| 5 | simp3 | |- ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) -> N e. NN0 ) |
|
| 6 | 4 5 | nnexpcld | |- ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) -> ( P ^ N ) e. NN ) |
| 7 | sgmval | |- ( ( A e. CC /\ ( P ^ N ) e. NN ) -> ( A sigma ( P ^ N ) ) = sum_ n e. { x e. NN | x || ( P ^ N ) } ( n ^c A ) ) |
|
| 8 | 1 6 7 | syl2anc | |- ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) -> ( A sigma ( P ^ N ) ) = sum_ n e. { x e. NN | x || ( P ^ N ) } ( n ^c A ) ) |
| 9 | oveq1 | |- ( n = ( P ^ k ) -> ( n ^c A ) = ( ( P ^ k ) ^c A ) ) |
|
| 10 | fzfid | |- ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) -> ( 0 ... N ) e. Fin ) |
|
| 11 | eqid | |- ( i e. ( 0 ... N ) |-> ( P ^ i ) ) = ( i e. ( 0 ... N ) |-> ( P ^ i ) ) |
|
| 12 | 11 | dvdsppwf1o | |- ( ( P e. Prime /\ N e. NN0 ) -> ( i e. ( 0 ... N ) |-> ( P ^ i ) ) : ( 0 ... N ) -1-1-onto-> { x e. NN | x || ( P ^ N ) } ) |
| 13 | 2 5 12 | syl2anc | |- ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) -> ( i e. ( 0 ... N ) |-> ( P ^ i ) ) : ( 0 ... N ) -1-1-onto-> { x e. NN | x || ( P ^ N ) } ) |
| 14 | oveq2 | |- ( i = k -> ( P ^ i ) = ( P ^ k ) ) |
|
| 15 | ovex | |- ( P ^ k ) e. _V |
|
| 16 | 14 11 15 | fvmpt | |- ( k e. ( 0 ... N ) -> ( ( i e. ( 0 ... N ) |-> ( P ^ i ) ) ` k ) = ( P ^ k ) ) |
| 17 | 16 | adantl | |- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( ( i e. ( 0 ... N ) |-> ( P ^ i ) ) ` k ) = ( P ^ k ) ) |
| 18 | elrabi | |- ( n e. { x e. NN | x || ( P ^ N ) } -> n e. NN ) |
|
| 19 | 18 | nncnd | |- ( n e. { x e. NN | x || ( P ^ N ) } -> n e. CC ) |
| 20 | cxpcl | |- ( ( n e. CC /\ A e. CC ) -> ( n ^c A ) e. CC ) |
|
| 21 | 19 1 20 | syl2anr | |- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ n e. { x e. NN | x || ( P ^ N ) } ) -> ( n ^c A ) e. CC ) |
| 22 | 9 10 13 17 21 | fsumf1o | |- ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) -> sum_ n e. { x e. NN | x || ( P ^ N ) } ( n ^c A ) = sum_ k e. ( 0 ... N ) ( ( P ^ k ) ^c A ) ) |
| 23 | elfznn0 | |- ( k e. ( 0 ... N ) -> k e. NN0 ) |
|
| 24 | 23 | adantl | |- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> k e. NN0 ) |
| 25 | 24 | nn0cnd | |- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> k e. CC ) |
| 26 | 1 | adantr | |- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> A e. CC ) |
| 27 | 25 26 | mulcomd | |- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( k x. A ) = ( A x. k ) ) |
| 28 | 27 | oveq2d | |- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( P ^c ( k x. A ) ) = ( P ^c ( A x. k ) ) ) |
| 29 | 4 | adantr | |- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> P e. NN ) |
| 30 | 29 | nnrpd | |- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> P e. RR+ ) |
| 31 | 24 | nn0red | |- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> k e. RR ) |
| 32 | 30 31 26 | cxpmuld | |- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( P ^c ( k x. A ) ) = ( ( P ^c k ) ^c A ) ) |
| 33 | 29 | nncnd | |- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> P e. CC ) |
| 34 | cxpexp | |- ( ( P e. CC /\ k e. NN0 ) -> ( P ^c k ) = ( P ^ k ) ) |
|
| 35 | 33 24 34 | syl2anc | |- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( P ^c k ) = ( P ^ k ) ) |
| 36 | 35 | oveq1d | |- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( ( P ^c k ) ^c A ) = ( ( P ^ k ) ^c A ) ) |
| 37 | 32 36 | eqtrd | |- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( P ^c ( k x. A ) ) = ( ( P ^ k ) ^c A ) ) |
| 38 | 33 26 24 | cxpmul2d | |- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( P ^c ( A x. k ) ) = ( ( P ^c A ) ^ k ) ) |
| 39 | 28 37 38 | 3eqtr3d | |- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( ( P ^ k ) ^c A ) = ( ( P ^c A ) ^ k ) ) |
| 40 | 39 | sumeq2dv | |- ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) -> sum_ k e. ( 0 ... N ) ( ( P ^ k ) ^c A ) = sum_ k e. ( 0 ... N ) ( ( P ^c A ) ^ k ) ) |
| 41 | 8 22 40 | 3eqtrd | |- ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) -> ( A sigma ( P ^ N ) ) = sum_ k e. ( 0 ... N ) ( ( P ^c A ) ^ k ) ) |