This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for well-founded recursion. dom F is closed under predecessor classes. (Contributed by Scott Fenton, 6-Dec-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frrlem5.1 | |- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
|
| frrlem5.2 | |- F = frecs ( R , A , G ) |
||
| Assertion | frrlem8 | |- ( z e. dom F -> Pred ( R , A , z ) C_ dom F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frrlem5.1 | |- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
|
| 2 | frrlem5.2 | |- F = frecs ( R , A , G ) |
|
| 3 | vex | |- z e. _V |
|
| 4 | 3 | eldm2 | |- ( z e. dom F <-> E. w <. z , w >. e. F ) |
| 5 | 1 2 | frrlem5 | |- F = U. B |
| 6 | 1 | frrlem1 | |- B = { g | E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) } |
| 7 | 6 | unieqi | |- U. B = U. { g | E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) } |
| 8 | 5 7 | eqtri | |- F = U. { g | E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) } |
| 9 | 8 | eleq2i | |- ( <. z , w >. e. F <-> <. z , w >. e. U. { g | E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) } ) |
| 10 | eluniab | |- ( <. z , w >. e. U. { g | E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) } <-> E. g ( <. z , w >. e. g /\ E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) ) |
|
| 11 | 9 10 | bitri | |- ( <. z , w >. e. F <-> E. g ( <. z , w >. e. g /\ E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) ) |
| 12 | simpr2r | |- ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> A. z e. a Pred ( R , A , z ) C_ a ) |
|
| 13 | vex | |- w e. _V |
|
| 14 | 3 13 | opeldm | |- ( <. z , w >. e. g -> z e. dom g ) |
| 15 | 14 | adantr | |- ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> z e. dom g ) |
| 16 | simpr1 | |- ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> g Fn a ) |
|
| 17 | 16 | fndmd | |- ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> dom g = a ) |
| 18 | 15 17 | eleqtrd | |- ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> z e. a ) |
| 19 | rsp | |- ( A. z e. a Pred ( R , A , z ) C_ a -> ( z e. a -> Pred ( R , A , z ) C_ a ) ) |
|
| 20 | 12 18 19 | sylc | |- ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> Pred ( R , A , z ) C_ a ) |
| 21 | 20 17 | sseqtrrd | |- ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> Pred ( R , A , z ) C_ dom g ) |
| 22 | 19.8a | |- ( ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) -> E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) |
|
| 23 | 6 | eqabri | |- ( g e. B <-> E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) |
| 24 | 22 23 | sylibr | |- ( ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) -> g e. B ) |
| 25 | 24 | adantl | |- ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> g e. B ) |
| 26 | elssuni | |- ( g e. B -> g C_ U. B ) |
|
| 27 | 25 26 | syl | |- ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> g C_ U. B ) |
| 28 | 27 5 | sseqtrrdi | |- ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> g C_ F ) |
| 29 | dmss | |- ( g C_ F -> dom g C_ dom F ) |
|
| 30 | 28 29 | syl | |- ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> dom g C_ dom F ) |
| 31 | 21 30 | sstrd | |- ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> Pred ( R , A , z ) C_ dom F ) |
| 32 | 31 | expcom | |- ( ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) -> ( <. z , w >. e. g -> Pred ( R , A , z ) C_ dom F ) ) |
| 33 | 32 | exlimiv | |- ( E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) -> ( <. z , w >. e. g -> Pred ( R , A , z ) C_ dom F ) ) |
| 34 | 33 | impcom | |- ( ( <. z , w >. e. g /\ E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> Pred ( R , A , z ) C_ dom F ) |
| 35 | 34 | exlimiv | |- ( E. g ( <. z , w >. e. g /\ E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> Pred ( R , A , z ) C_ dom F ) |
| 36 | 11 35 | sylbi | |- ( <. z , w >. e. F -> Pred ( R , A , z ) C_ dom F ) |
| 37 | 36 | exlimiv | |- ( E. w <. z , w >. e. F -> Pred ( R , A , z ) C_ dom F ) |
| 38 | 4 37 | sylbi | |- ( z e. dom F -> Pred ( R , A , z ) C_ dom F ) |