This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a union when the argument is in the second domain. (Contributed by Scott Fenton, 29-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvun2 | |- ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. B ) ) -> ( ( F u. G ) ` X ) = ( G ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom | |- ( F u. G ) = ( G u. F ) |
|
| 2 | 1 | fveq1i | |- ( ( F u. G ) ` X ) = ( ( G u. F ) ` X ) |
| 3 | incom | |- ( A i^i B ) = ( B i^i A ) |
|
| 4 | 3 | eqeq1i | |- ( ( A i^i B ) = (/) <-> ( B i^i A ) = (/) ) |
| 5 | 4 | anbi1i | |- ( ( ( A i^i B ) = (/) /\ X e. B ) <-> ( ( B i^i A ) = (/) /\ X e. B ) ) |
| 6 | fvun1 | |- ( ( G Fn B /\ F Fn A /\ ( ( B i^i A ) = (/) /\ X e. B ) ) -> ( ( G u. F ) ` X ) = ( G ` X ) ) |
|
| 7 | 5 6 | syl3an3b | |- ( ( G Fn B /\ F Fn A /\ ( ( A i^i B ) = (/) /\ X e. B ) ) -> ( ( G u. F ) ` X ) = ( G ` X ) ) |
| 8 | 7 | 3com12 | |- ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. B ) ) -> ( ( G u. F ) ` X ) = ( G ` X ) ) |
| 9 | 2 8 | eqtrid | |- ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. B ) ) -> ( ( F u. G ) ` X ) = ( G ` X ) ) |