This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for well-founded recursion. Show that the well-founded recursive generator produces a function. Hypothesis three will be eliminated using different induction rules depending on if we use partial orders or the axiom of infinity. (Contributed by Scott Fenton, 27-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frrlem9.1 | |- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
|
| frrlem9.2 | |- F = frecs ( R , A , G ) |
||
| frrlem9.3 | |- ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) |
||
| Assertion | frrlem9 | |- ( ph -> Fun F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frrlem9.1 | |- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
|
| 2 | frrlem9.2 | |- F = frecs ( R , A , G ) |
|
| 3 | frrlem9.3 | |- ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) |
|
| 4 | eluni2 | |- ( <. x , u >. e. U. B <-> E. g e. B <. x , u >. e. g ) |
|
| 5 | df-br | |- ( x F u <-> <. x , u >. e. F ) |
|
| 6 | 1 2 | frrlem5 | |- F = U. B |
| 7 | 6 | eleq2i | |- ( <. x , u >. e. F <-> <. x , u >. e. U. B ) |
| 8 | 5 7 | bitri | |- ( x F u <-> <. x , u >. e. U. B ) |
| 9 | df-br | |- ( x g u <-> <. x , u >. e. g ) |
|
| 10 | 9 | rexbii | |- ( E. g e. B x g u <-> E. g e. B <. x , u >. e. g ) |
| 11 | 4 8 10 | 3bitr4i | |- ( x F u <-> E. g e. B x g u ) |
| 12 | eluni2 | |- ( <. x , v >. e. U. B <-> E. h e. B <. x , v >. e. h ) |
|
| 13 | df-br | |- ( x F v <-> <. x , v >. e. F ) |
|
| 14 | 6 | eleq2i | |- ( <. x , v >. e. F <-> <. x , v >. e. U. B ) |
| 15 | 13 14 | bitri | |- ( x F v <-> <. x , v >. e. U. B ) |
| 16 | df-br | |- ( x h v <-> <. x , v >. e. h ) |
|
| 17 | 16 | rexbii | |- ( E. h e. B x h v <-> E. h e. B <. x , v >. e. h ) |
| 18 | 12 15 17 | 3bitr4i | |- ( x F v <-> E. h e. B x h v ) |
| 19 | 11 18 | anbi12i | |- ( ( x F u /\ x F v ) <-> ( E. g e. B x g u /\ E. h e. B x h v ) ) |
| 20 | reeanv | |- ( E. g e. B E. h e. B ( x g u /\ x h v ) <-> ( E. g e. B x g u /\ E. h e. B x h v ) ) |
|
| 21 | 19 20 | bitr4i | |- ( ( x F u /\ x F v ) <-> E. g e. B E. h e. B ( x g u /\ x h v ) ) |
| 22 | 3 | rexlimdvva | |- ( ph -> ( E. g e. B E. h e. B ( x g u /\ x h v ) -> u = v ) ) |
| 23 | 21 22 | biimtrid | |- ( ph -> ( ( x F u /\ x F v ) -> u = v ) ) |
| 24 | 23 | alrimiv | |- ( ph -> A. v ( ( x F u /\ x F v ) -> u = v ) ) |
| 25 | 24 | alrimivv | |- ( ph -> A. x A. u A. v ( ( x F u /\ x F v ) -> u = v ) ) |
| 26 | 1 2 | frrlem6 | |- Rel F |
| 27 | dffun2 | |- ( Fun F <-> ( Rel F /\ A. x A. u A. v ( ( x F u /\ x F v ) -> u = v ) ) ) |
|
| 28 | 26 27 | mpbiran | |- ( Fun F <-> A. x A. u A. v ( ( x F u /\ x F v ) -> u = v ) ) |
| 29 | 25 28 | sylibr | |- ( ph -> Fun F ) |