This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a union when the argument is in the first domain. (Contributed by Scott Fenton, 29-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvun1 | |- ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> ( ( F u. G ) ` X ) = ( F ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun | |- ( F Fn A -> Fun F ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> Fun F ) |
| 3 | fnfun | |- ( G Fn B -> Fun G ) |
|
| 4 | 3 | 3ad2ant2 | |- ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> Fun G ) |
| 5 | fndm | |- ( F Fn A -> dom F = A ) |
|
| 6 | fndm | |- ( G Fn B -> dom G = B ) |
|
| 7 | 5 6 | ineqan12d | |- ( ( F Fn A /\ G Fn B ) -> ( dom F i^i dom G ) = ( A i^i B ) ) |
| 8 | 7 | eqeq1d | |- ( ( F Fn A /\ G Fn B ) -> ( ( dom F i^i dom G ) = (/) <-> ( A i^i B ) = (/) ) ) |
| 9 | 8 | biimprd | |- ( ( F Fn A /\ G Fn B ) -> ( ( A i^i B ) = (/) -> ( dom F i^i dom G ) = (/) ) ) |
| 10 | 9 | adantrd | |- ( ( F Fn A /\ G Fn B ) -> ( ( ( A i^i B ) = (/) /\ X e. A ) -> ( dom F i^i dom G ) = (/) ) ) |
| 11 | 10 | 3impia | |- ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> ( dom F i^i dom G ) = (/) ) |
| 12 | fvun | |- ( ( ( Fun F /\ Fun G ) /\ ( dom F i^i dom G ) = (/) ) -> ( ( F u. G ) ` X ) = ( ( F ` X ) u. ( G ` X ) ) ) |
|
| 13 | 2 4 11 12 | syl21anc | |- ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> ( ( F u. G ) ` X ) = ( ( F ` X ) u. ( G ` X ) ) ) |
| 14 | disjel | |- ( ( ( A i^i B ) = (/) /\ X e. A ) -> -. X e. B ) |
|
| 15 | 14 | adantl | |- ( ( G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> -. X e. B ) |
| 16 | 6 | eleq2d | |- ( G Fn B -> ( X e. dom G <-> X e. B ) ) |
| 17 | 16 | adantr | |- ( ( G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> ( X e. dom G <-> X e. B ) ) |
| 18 | 15 17 | mtbird | |- ( ( G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> -. X e. dom G ) |
| 19 | 18 | 3adant1 | |- ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> -. X e. dom G ) |
| 20 | ndmfv | |- ( -. X e. dom G -> ( G ` X ) = (/) ) |
|
| 21 | 19 20 | syl | |- ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> ( G ` X ) = (/) ) |
| 22 | 21 | uneq2d | |- ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> ( ( F ` X ) u. ( G ` X ) ) = ( ( F ` X ) u. (/) ) ) |
| 23 | un0 | |- ( ( F ` X ) u. (/) ) = ( F ` X ) |
|
| 24 | 22 23 | eqtrdi | |- ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> ( ( F ` X ) u. ( G ` X ) ) = ( F ` X ) ) |
| 25 | 13 24 | eqtrd | |- ( ( F Fn A /\ G Fn B /\ ( ( A i^i B ) = (/) /\ X e. A ) ) -> ( ( F u. G ) ` X ) = ( F ` X ) ) |