This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A is not in C , then the restriction of a singleton of <. A , B >. to C is null. (Contributed by Scott Fenton, 15-Apr-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ressnop0 | |- ( -. A e. C -> ( { <. A , B >. } |` C ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp1 | |- ( <. A , B >. e. ( C X. _V ) -> A e. C ) |
|
| 2 | df-res | |- ( { <. A , B >. } |` C ) = ( { <. A , B >. } i^i ( C X. _V ) ) |
|
| 3 | incom | |- ( { <. A , B >. } i^i ( C X. _V ) ) = ( ( C X. _V ) i^i { <. A , B >. } ) |
|
| 4 | 2 3 | eqtri | |- ( { <. A , B >. } |` C ) = ( ( C X. _V ) i^i { <. A , B >. } ) |
| 5 | disjsn | |- ( ( ( C X. _V ) i^i { <. A , B >. } ) = (/) <-> -. <. A , B >. e. ( C X. _V ) ) |
|
| 6 | 5 | biimpri | |- ( -. <. A , B >. e. ( C X. _V ) -> ( ( C X. _V ) i^i { <. A , B >. } ) = (/) ) |
| 7 | 4 6 | eqtrid | |- ( -. <. A , B >. e. ( C X. _V ) -> ( { <. A , B >. } |` C ) = (/) ) |
| 8 | 1 7 | nsyl5 | |- ( -. A e. C -> ( { <. A , B >. } |` C ) = (/) ) |