This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for well-founded recursion. For the next several theorems we will be aiming to prove that dom F = A . To do this, we set up a function C that supposedly contains an element of A that is not in dom F and we show that the element must be in dom F . Our choice of what to restrict F to depends on if we assume partial orders or the axiom of infinity. To begin with, we establish the functionality of C . (Contributed by Scott Fenton, 7-Dec-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frrlem11.1 | |- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
|
| frrlem11.2 | |- F = frecs ( R , A , G ) |
||
| frrlem11.3 | |- ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) |
||
| frrlem11.4 | |- C = ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) |
||
| Assertion | frrlem11 | |- ( ( ph /\ z e. ( A \ dom F ) ) -> C Fn ( ( S i^i dom F ) u. { z } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frrlem11.1 | |- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
|
| 2 | frrlem11.2 | |- F = frecs ( R , A , G ) |
|
| 3 | frrlem11.3 | |- ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) |
|
| 4 | frrlem11.4 | |- C = ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) |
|
| 5 | 1 2 3 | frrlem9 | |- ( ph -> Fun F ) |
| 6 | 5 | funresd | |- ( ph -> Fun ( F |` S ) ) |
| 7 | dmres | |- dom ( F |` S ) = ( S i^i dom F ) |
|
| 8 | df-fn | |- ( ( F |` S ) Fn ( S i^i dom F ) <-> ( Fun ( F |` S ) /\ dom ( F |` S ) = ( S i^i dom F ) ) ) |
|
| 9 | 7 8 | mpbiran2 | |- ( ( F |` S ) Fn ( S i^i dom F ) <-> Fun ( F |` S ) ) |
| 10 | 6 9 | sylibr | |- ( ph -> ( F |` S ) Fn ( S i^i dom F ) ) |
| 11 | vex | |- z e. _V |
|
| 12 | ovex | |- ( z G ( F |` Pred ( R , A , z ) ) ) e. _V |
|
| 13 | 11 12 | fnsn | |- { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z } |
| 14 | 10 13 | jctir | |- ( ph -> ( ( F |` S ) Fn ( S i^i dom F ) /\ { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z } ) ) |
| 15 | eldifn | |- ( z e. ( A \ dom F ) -> -. z e. dom F ) |
|
| 16 | elinel2 | |- ( z e. ( S i^i dom F ) -> z e. dom F ) |
|
| 17 | 15 16 | nsyl | |- ( z e. ( A \ dom F ) -> -. z e. ( S i^i dom F ) ) |
| 18 | disjsn | |- ( ( ( S i^i dom F ) i^i { z } ) = (/) <-> -. z e. ( S i^i dom F ) ) |
|
| 19 | 17 18 | sylibr | |- ( z e. ( A \ dom F ) -> ( ( S i^i dom F ) i^i { z } ) = (/) ) |
| 20 | fnun | |- ( ( ( ( F |` S ) Fn ( S i^i dom F ) /\ { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z } ) /\ ( ( S i^i dom F ) i^i { z } ) = (/) ) -> ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) Fn ( ( S i^i dom F ) u. { z } ) ) |
|
| 21 | 14 19 20 | syl2an | |- ( ( ph /\ z e. ( A \ dom F ) ) -> ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) Fn ( ( S i^i dom F ) u. { z } ) ) |
| 22 | 4 | fneq1i | |- ( C Fn ( ( S i^i dom F ) u. { z } ) <-> ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) Fn ( ( S i^i dom F ) u. { z } ) ) |
| 23 | 21 22 | sylibr | |- ( ( ph /\ z e. ( A \ dom F ) ) -> C Fn ( ( S i^i dom F ) u. { z } ) ) |