This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fpwwe2 . Given two well-orders <. X , R >. and <. Y , S >. of parts of A , one is an initial segment of the other. (Contributed by Mario Carneiro, 15-May-2015) (Revised by AV, 20-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fpwwe2.1 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
|
| fpwwe2.2 | |- ( ph -> A e. V ) |
||
| fpwwe2.3 | |- ( ( ph /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
||
| fpwwe2lem9.4 | |- ( ph -> X W R ) |
||
| fpwwe2lem9.6 | |- ( ph -> Y W S ) |
||
| Assertion | fpwwe2lem9 | |- ( ph -> ( ( X C_ Y /\ R = ( S i^i ( Y X. X ) ) ) \/ ( Y C_ X /\ S = ( R i^i ( X X. Y ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwwe2.1 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
|
| 2 | fpwwe2.2 | |- ( ph -> A e. V ) |
|
| 3 | fpwwe2.3 | |- ( ( ph /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
|
| 4 | fpwwe2lem9.4 | |- ( ph -> X W R ) |
|
| 5 | fpwwe2lem9.6 | |- ( ph -> Y W S ) |
|
| 6 | eqid | |- OrdIso ( R , X ) = OrdIso ( R , X ) |
|
| 7 | 6 | oicl | |- Ord dom OrdIso ( R , X ) |
| 8 | eqid | |- OrdIso ( S , Y ) = OrdIso ( S , Y ) |
|
| 9 | 8 | oicl | |- Ord dom OrdIso ( S , Y ) |
| 10 | ordtri2or2 | |- ( ( Ord dom OrdIso ( R , X ) /\ Ord dom OrdIso ( S , Y ) ) -> ( dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) \/ dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) ) ) |
|
| 11 | 7 9 10 | mp2an | |- ( dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) \/ dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) ) |
| 12 | 2 | adantr | |- ( ( ph /\ dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) ) -> A e. V ) |
| 13 | 3 | adantlr | |- ( ( ( ph /\ dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) ) /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
| 14 | 4 | adantr | |- ( ( ph /\ dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) ) -> X W R ) |
| 15 | 5 | adantr | |- ( ( ph /\ dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) ) -> Y W S ) |
| 16 | simpr | |- ( ( ph /\ dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) ) -> dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) ) |
|
| 17 | 1 12 13 14 15 6 8 16 | fpwwe2lem8 | |- ( ( ph /\ dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) ) -> ( X C_ Y /\ R = ( S i^i ( Y X. X ) ) ) ) |
| 18 | 17 | ex | |- ( ph -> ( dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) -> ( X C_ Y /\ R = ( S i^i ( Y X. X ) ) ) ) ) |
| 19 | 2 | adantr | |- ( ( ph /\ dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) ) -> A e. V ) |
| 20 | 3 | adantlr | |- ( ( ( ph /\ dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) ) /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
| 21 | 5 | adantr | |- ( ( ph /\ dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) ) -> Y W S ) |
| 22 | 4 | adantr | |- ( ( ph /\ dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) ) -> X W R ) |
| 23 | simpr | |- ( ( ph /\ dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) ) -> dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) ) |
|
| 24 | 1 19 20 21 22 8 6 23 | fpwwe2lem8 | |- ( ( ph /\ dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) ) -> ( Y C_ X /\ S = ( R i^i ( X X. Y ) ) ) ) |
| 25 | 24 | ex | |- ( ph -> ( dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) -> ( Y C_ X /\ S = ( R i^i ( X X. Y ) ) ) ) ) |
| 26 | 18 25 | orim12d | |- ( ph -> ( ( dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) \/ dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) ) -> ( ( X C_ Y /\ R = ( S i^i ( Y X. X ) ) ) \/ ( Y C_ X /\ S = ( R i^i ( X X. Y ) ) ) ) ) ) |
| 27 | 11 26 | mpi | |- ( ph -> ( ( X C_ Y /\ R = ( S i^i ( Y X. X ) ) ) \/ ( Y C_ X /\ S = ( R i^i ( X X. Y ) ) ) ) ) |