This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fmfnfm . (Contributed by Jeff Hankins, 19-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fmfnfm.b | |- ( ph -> B e. ( fBas ` Y ) ) |
|
| fmfnfm.l | |- ( ph -> L e. ( Fil ` X ) ) |
||
| fmfnfm.f | |- ( ph -> F : Y --> X ) |
||
| fmfnfm.fm | |- ( ph -> ( ( X FilMap F ) ` B ) C_ L ) |
||
| Assertion | fmfnfmlem2 | |- ( ph -> ( E. x e. L s = ( `' F " x ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmfnfm.b | |- ( ph -> B e. ( fBas ` Y ) ) |
|
| 2 | fmfnfm.l | |- ( ph -> L e. ( Fil ` X ) ) |
|
| 3 | fmfnfm.f | |- ( ph -> F : Y --> X ) |
|
| 4 | fmfnfm.fm | |- ( ph -> ( ( X FilMap F ) ` B ) C_ L ) |
|
| 5 | 2 | ad2antrr | |- ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> L e. ( Fil ` X ) ) |
| 6 | simplr | |- ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> x e. L ) |
|
| 7 | ffn | |- ( F : Y --> X -> F Fn Y ) |
|
| 8 | dffn4 | |- ( F Fn Y <-> F : Y -onto-> ran F ) |
|
| 9 | 7 8 | sylib | |- ( F : Y --> X -> F : Y -onto-> ran F ) |
| 10 | foima | |- ( F : Y -onto-> ran F -> ( F " Y ) = ran F ) |
|
| 11 | 3 9 10 | 3syl | |- ( ph -> ( F " Y ) = ran F ) |
| 12 | filtop | |- ( L e. ( Fil ` X ) -> X e. L ) |
|
| 13 | 2 12 | syl | |- ( ph -> X e. L ) |
| 14 | fgcl | |- ( B e. ( fBas ` Y ) -> ( Y filGen B ) e. ( Fil ` Y ) ) |
|
| 15 | filtop | |- ( ( Y filGen B ) e. ( Fil ` Y ) -> Y e. ( Y filGen B ) ) |
|
| 16 | 1 14 15 | 3syl | |- ( ph -> Y e. ( Y filGen B ) ) |
| 17 | eqid | |- ( Y filGen B ) = ( Y filGen B ) |
|
| 18 | 17 | imaelfm | |- ( ( ( X e. L /\ B e. ( fBas ` Y ) /\ F : Y --> X ) /\ Y e. ( Y filGen B ) ) -> ( F " Y ) e. ( ( X FilMap F ) ` B ) ) |
| 19 | 13 1 3 16 18 | syl31anc | |- ( ph -> ( F " Y ) e. ( ( X FilMap F ) ` B ) ) |
| 20 | 11 19 | eqeltrrd | |- ( ph -> ran F e. ( ( X FilMap F ) ` B ) ) |
| 21 | 4 20 | sseldd | |- ( ph -> ran F e. L ) |
| 22 | 21 | ad2antrr | |- ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ran F e. L ) |
| 23 | filin | |- ( ( L e. ( Fil ` X ) /\ x e. L /\ ran F e. L ) -> ( x i^i ran F ) e. L ) |
|
| 24 | 5 6 22 23 | syl3anc | |- ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( x i^i ran F ) e. L ) |
| 25 | simprr | |- ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> t C_ X ) |
|
| 26 | elin | |- ( y e. ( x i^i ran F ) <-> ( y e. x /\ y e. ran F ) ) |
|
| 27 | fvelrnb | |- ( F Fn Y -> ( y e. ran F <-> E. z e. Y ( F ` z ) = y ) ) |
|
| 28 | 3 7 27 | 3syl | |- ( ph -> ( y e. ran F <-> E. z e. Y ( F ` z ) = y ) ) |
| 29 | 28 | ad2antrr | |- ( ( ( ph /\ x e. L ) /\ ( F " ( `' F " x ) ) C_ t ) -> ( y e. ran F <-> E. z e. Y ( F ` z ) = y ) ) |
| 30 | 3 | ffund | |- ( ph -> Fun F ) |
| 31 | 30 | ad2antrr | |- ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ z e. Y ) ) -> Fun F ) |
| 32 | simprr | |- ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ z e. Y ) ) -> z e. Y ) |
|
| 33 | 3 | fdmd | |- ( ph -> dom F = Y ) |
| 34 | 33 | ad2antrr | |- ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ z e. Y ) ) -> dom F = Y ) |
| 35 | 32 34 | eleqtrrd | |- ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ z e. Y ) ) -> z e. dom F ) |
| 36 | fvimacnv | |- ( ( Fun F /\ z e. dom F ) -> ( ( F ` z ) e. x <-> z e. ( `' F " x ) ) ) |
|
| 37 | 31 35 36 | syl2anc | |- ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ z e. Y ) ) -> ( ( F ` z ) e. x <-> z e. ( `' F " x ) ) ) |
| 38 | cnvimass | |- ( `' F " x ) C_ dom F |
|
| 39 | funfvima2 | |- ( ( Fun F /\ ( `' F " x ) C_ dom F ) -> ( z e. ( `' F " x ) -> ( F ` z ) e. ( F " ( `' F " x ) ) ) ) |
|
| 40 | 31 38 39 | sylancl | |- ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ z e. Y ) ) -> ( z e. ( `' F " x ) -> ( F ` z ) e. ( F " ( `' F " x ) ) ) ) |
| 41 | ssel | |- ( ( F " ( `' F " x ) ) C_ t -> ( ( F ` z ) e. ( F " ( `' F " x ) ) -> ( F ` z ) e. t ) ) |
|
| 42 | 41 | ad2antrl | |- ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ z e. Y ) ) -> ( ( F ` z ) e. ( F " ( `' F " x ) ) -> ( F ` z ) e. t ) ) |
| 43 | 40 42 | syld | |- ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ z e. Y ) ) -> ( z e. ( `' F " x ) -> ( F ` z ) e. t ) ) |
| 44 | 37 43 | sylbid | |- ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ z e. Y ) ) -> ( ( F ` z ) e. x -> ( F ` z ) e. t ) ) |
| 45 | eleq1 | |- ( ( F ` z ) = y -> ( ( F ` z ) e. x <-> y e. x ) ) |
|
| 46 | eleq1 | |- ( ( F ` z ) = y -> ( ( F ` z ) e. t <-> y e. t ) ) |
|
| 47 | 45 46 | imbi12d | |- ( ( F ` z ) = y -> ( ( ( F ` z ) e. x -> ( F ` z ) e. t ) <-> ( y e. x -> y e. t ) ) ) |
| 48 | 44 47 | syl5ibcom | |- ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ z e. Y ) ) -> ( ( F ` z ) = y -> ( y e. x -> y e. t ) ) ) |
| 49 | 48 | expr | |- ( ( ( ph /\ x e. L ) /\ ( F " ( `' F " x ) ) C_ t ) -> ( z e. Y -> ( ( F ` z ) = y -> ( y e. x -> y e. t ) ) ) ) |
| 50 | 49 | rexlimdv | |- ( ( ( ph /\ x e. L ) /\ ( F " ( `' F " x ) ) C_ t ) -> ( E. z e. Y ( F ` z ) = y -> ( y e. x -> y e. t ) ) ) |
| 51 | 29 50 | sylbid | |- ( ( ( ph /\ x e. L ) /\ ( F " ( `' F " x ) ) C_ t ) -> ( y e. ran F -> ( y e. x -> y e. t ) ) ) |
| 52 | 51 | impcomd | |- ( ( ( ph /\ x e. L ) /\ ( F " ( `' F " x ) ) C_ t ) -> ( ( y e. x /\ y e. ran F ) -> y e. t ) ) |
| 53 | 52 | adantrr | |- ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( ( y e. x /\ y e. ran F ) -> y e. t ) ) |
| 54 | 26 53 | biimtrid | |- ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( y e. ( x i^i ran F ) -> y e. t ) ) |
| 55 | 54 | ssrdv | |- ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( x i^i ran F ) C_ t ) |
| 56 | filss | |- ( ( L e. ( Fil ` X ) /\ ( ( x i^i ran F ) e. L /\ t C_ X /\ ( x i^i ran F ) C_ t ) ) -> t e. L ) |
|
| 57 | 5 24 25 55 56 | syl13anc | |- ( ( ( ph /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> t e. L ) |
| 58 | 57 | exp32 | |- ( ( ph /\ x e. L ) -> ( ( F " ( `' F " x ) ) C_ t -> ( t C_ X -> t e. L ) ) ) |
| 59 | imaeq2 | |- ( s = ( `' F " x ) -> ( F " s ) = ( F " ( `' F " x ) ) ) |
|
| 60 | 59 | sseq1d | |- ( s = ( `' F " x ) -> ( ( F " s ) C_ t <-> ( F " ( `' F " x ) ) C_ t ) ) |
| 61 | 60 | imbi1d | |- ( s = ( `' F " x ) -> ( ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) <-> ( ( F " ( `' F " x ) ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 62 | 58 61 | syl5ibrcom | |- ( ( ph /\ x e. L ) -> ( s = ( `' F " x ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 63 | 62 | rexlimdva | |- ( ph -> ( E. x e. L s = ( `' F " x ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |