This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fldiv4p1lem1div2 | |- ( ( N = 3 \/ N e. ( ZZ>= ` 5 ) ) -> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1le1 | |- 1 <_ 1 |
|
| 2 | 1 | a1i | |- ( N = 3 -> 1 <_ 1 ) |
| 3 | fvoveq1 | |- ( N = 3 -> ( |_ ` ( N / 4 ) ) = ( |_ ` ( 3 / 4 ) ) ) |
|
| 4 | 3lt4 | |- 3 < 4 |
|
| 5 | 3nn0 | |- 3 e. NN0 |
|
| 6 | 4nn | |- 4 e. NN |
|
| 7 | divfl0 | |- ( ( 3 e. NN0 /\ 4 e. NN ) -> ( 3 < 4 <-> ( |_ ` ( 3 / 4 ) ) = 0 ) ) |
|
| 8 | 5 6 7 | mp2an | |- ( 3 < 4 <-> ( |_ ` ( 3 / 4 ) ) = 0 ) |
| 9 | 4 8 | mpbi | |- ( |_ ` ( 3 / 4 ) ) = 0 |
| 10 | 3 9 | eqtrdi | |- ( N = 3 -> ( |_ ` ( N / 4 ) ) = 0 ) |
| 11 | 10 | oveq1d | |- ( N = 3 -> ( ( |_ ` ( N / 4 ) ) + 1 ) = ( 0 + 1 ) ) |
| 12 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 13 | 11 12 | eqtrdi | |- ( N = 3 -> ( ( |_ ` ( N / 4 ) ) + 1 ) = 1 ) |
| 14 | oveq1 | |- ( N = 3 -> ( N - 1 ) = ( 3 - 1 ) ) |
|
| 15 | 3m1e2 | |- ( 3 - 1 ) = 2 |
|
| 16 | 14 15 | eqtrdi | |- ( N = 3 -> ( N - 1 ) = 2 ) |
| 17 | 16 | oveq1d | |- ( N = 3 -> ( ( N - 1 ) / 2 ) = ( 2 / 2 ) ) |
| 18 | 2div2e1 | |- ( 2 / 2 ) = 1 |
|
| 19 | 17 18 | eqtrdi | |- ( N = 3 -> ( ( N - 1 ) / 2 ) = 1 ) |
| 20 | 2 13 19 | 3brtr4d | |- ( N = 3 -> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) |
| 21 | uzp1 | |- ( N e. ( ZZ>= ` 5 ) -> ( N = 5 \/ N e. ( ZZ>= ` ( 5 + 1 ) ) ) ) |
|
| 22 | 2re | |- 2 e. RR |
|
| 23 | 22 | leidi | |- 2 <_ 2 |
| 24 | 23 | a1i | |- ( N = 5 -> 2 <_ 2 ) |
| 25 | fvoveq1 | |- ( N = 5 -> ( |_ ` ( N / 4 ) ) = ( |_ ` ( 5 / 4 ) ) ) |
|
| 26 | df-5 | |- 5 = ( 4 + 1 ) |
|
| 27 | 26 | oveq1i | |- ( 5 / 4 ) = ( ( 4 + 1 ) / 4 ) |
| 28 | 4cn | |- 4 e. CC |
|
| 29 | ax-1cn | |- 1 e. CC |
|
| 30 | 4ne0 | |- 4 =/= 0 |
|
| 31 | 28 29 28 30 | divdiri | |- ( ( 4 + 1 ) / 4 ) = ( ( 4 / 4 ) + ( 1 / 4 ) ) |
| 32 | 28 30 | dividi | |- ( 4 / 4 ) = 1 |
| 33 | 32 | oveq1i | |- ( ( 4 / 4 ) + ( 1 / 4 ) ) = ( 1 + ( 1 / 4 ) ) |
| 34 | 27 31 33 | 3eqtri | |- ( 5 / 4 ) = ( 1 + ( 1 / 4 ) ) |
| 35 | 34 | fveq2i | |- ( |_ ` ( 5 / 4 ) ) = ( |_ ` ( 1 + ( 1 / 4 ) ) ) |
| 36 | 1re | |- 1 e. RR |
|
| 37 | 0le1 | |- 0 <_ 1 |
|
| 38 | 4re | |- 4 e. RR |
|
| 39 | 4pos | |- 0 < 4 |
|
| 40 | divge0 | |- ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( 4 e. RR /\ 0 < 4 ) ) -> 0 <_ ( 1 / 4 ) ) |
|
| 41 | 36 37 38 39 40 | mp4an | |- 0 <_ ( 1 / 4 ) |
| 42 | 1lt4 | |- 1 < 4 |
|
| 43 | recgt1 | |- ( ( 4 e. RR /\ 0 < 4 ) -> ( 1 < 4 <-> ( 1 / 4 ) < 1 ) ) |
|
| 44 | 38 39 43 | mp2an | |- ( 1 < 4 <-> ( 1 / 4 ) < 1 ) |
| 45 | 42 44 | mpbi | |- ( 1 / 4 ) < 1 |
| 46 | 1z | |- 1 e. ZZ |
|
| 47 | 38 30 | rereccli | |- ( 1 / 4 ) e. RR |
| 48 | flbi2 | |- ( ( 1 e. ZZ /\ ( 1 / 4 ) e. RR ) -> ( ( |_ ` ( 1 + ( 1 / 4 ) ) ) = 1 <-> ( 0 <_ ( 1 / 4 ) /\ ( 1 / 4 ) < 1 ) ) ) |
|
| 49 | 46 47 48 | mp2an | |- ( ( |_ ` ( 1 + ( 1 / 4 ) ) ) = 1 <-> ( 0 <_ ( 1 / 4 ) /\ ( 1 / 4 ) < 1 ) ) |
| 50 | 41 45 49 | mpbir2an | |- ( |_ ` ( 1 + ( 1 / 4 ) ) ) = 1 |
| 51 | 35 50 | eqtri | |- ( |_ ` ( 5 / 4 ) ) = 1 |
| 52 | 25 51 | eqtrdi | |- ( N = 5 -> ( |_ ` ( N / 4 ) ) = 1 ) |
| 53 | 52 | oveq1d | |- ( N = 5 -> ( ( |_ ` ( N / 4 ) ) + 1 ) = ( 1 + 1 ) ) |
| 54 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 55 | 53 54 | eqtrdi | |- ( N = 5 -> ( ( |_ ` ( N / 4 ) ) + 1 ) = 2 ) |
| 56 | oveq1 | |- ( N = 5 -> ( N - 1 ) = ( 5 - 1 ) ) |
|
| 57 | 5m1e4 | |- ( 5 - 1 ) = 4 |
|
| 58 | 56 57 | eqtrdi | |- ( N = 5 -> ( N - 1 ) = 4 ) |
| 59 | 58 | oveq1d | |- ( N = 5 -> ( ( N - 1 ) / 2 ) = ( 4 / 2 ) ) |
| 60 | 4div2e2 | |- ( 4 / 2 ) = 2 |
|
| 61 | 59 60 | eqtrdi | |- ( N = 5 -> ( ( N - 1 ) / 2 ) = 2 ) |
| 62 | 24 55 61 | 3brtr4d | |- ( N = 5 -> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) |
| 63 | eluz2 | |- ( N e. ( ZZ>= ` 6 ) <-> ( 6 e. ZZ /\ N e. ZZ /\ 6 <_ N ) ) |
|
| 64 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 65 | id | |- ( N e. RR -> N e. RR ) |
|
| 66 | 38 | a1i | |- ( N e. RR -> 4 e. RR ) |
| 67 | 30 | a1i | |- ( N e. RR -> 4 =/= 0 ) |
| 68 | 65 66 67 | redivcld | |- ( N e. RR -> ( N / 4 ) e. RR ) |
| 69 | flle | |- ( ( N / 4 ) e. RR -> ( |_ ` ( N / 4 ) ) <_ ( N / 4 ) ) |
|
| 70 | 64 68 69 | 3syl | |- ( N e. ZZ -> ( |_ ` ( N / 4 ) ) <_ ( N / 4 ) ) |
| 71 | 70 | adantr | |- ( ( N e. ZZ /\ 6 <_ N ) -> ( |_ ` ( N / 4 ) ) <_ ( N / 4 ) ) |
| 72 | 68 | flcld | |- ( N e. RR -> ( |_ ` ( N / 4 ) ) e. ZZ ) |
| 73 | 72 | zred | |- ( N e. RR -> ( |_ ` ( N / 4 ) ) e. RR ) |
| 74 | 36 | a1i | |- ( N e. RR -> 1 e. RR ) |
| 75 | 73 68 74 | 3jca | |- ( N e. RR -> ( ( |_ ` ( N / 4 ) ) e. RR /\ ( N / 4 ) e. RR /\ 1 e. RR ) ) |
| 76 | 64 75 | syl | |- ( N e. ZZ -> ( ( |_ ` ( N / 4 ) ) e. RR /\ ( N / 4 ) e. RR /\ 1 e. RR ) ) |
| 77 | 76 | adantr | |- ( ( N e. ZZ /\ 6 <_ N ) -> ( ( |_ ` ( N / 4 ) ) e. RR /\ ( N / 4 ) e. RR /\ 1 e. RR ) ) |
| 78 | leadd1 | |- ( ( ( |_ ` ( N / 4 ) ) e. RR /\ ( N / 4 ) e. RR /\ 1 e. RR ) -> ( ( |_ ` ( N / 4 ) ) <_ ( N / 4 ) <-> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N / 4 ) + 1 ) ) ) |
|
| 79 | 77 78 | syl | |- ( ( N e. ZZ /\ 6 <_ N ) -> ( ( |_ ` ( N / 4 ) ) <_ ( N / 4 ) <-> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N / 4 ) + 1 ) ) ) |
| 80 | 71 79 | mpbid | |- ( ( N e. ZZ /\ 6 <_ N ) -> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N / 4 ) + 1 ) ) |
| 81 | div4p1lem1div2 | |- ( ( N e. RR /\ 6 <_ N ) -> ( ( N / 4 ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) |
|
| 82 | 64 81 | sylan | |- ( ( N e. ZZ /\ 6 <_ N ) -> ( ( N / 4 ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) |
| 83 | peano2re | |- ( ( |_ ` ( N / 4 ) ) e. RR -> ( ( |_ ` ( N / 4 ) ) + 1 ) e. RR ) |
|
| 84 | 73 83 | syl | |- ( N e. RR -> ( ( |_ ` ( N / 4 ) ) + 1 ) e. RR ) |
| 85 | peano2re | |- ( ( N / 4 ) e. RR -> ( ( N / 4 ) + 1 ) e. RR ) |
|
| 86 | 68 85 | syl | |- ( N e. RR -> ( ( N / 4 ) + 1 ) e. RR ) |
| 87 | peano2rem | |- ( N e. RR -> ( N - 1 ) e. RR ) |
|
| 88 | 87 | rehalfcld | |- ( N e. RR -> ( ( N - 1 ) / 2 ) e. RR ) |
| 89 | 84 86 88 | 3jca | |- ( N e. RR -> ( ( ( |_ ` ( N / 4 ) ) + 1 ) e. RR /\ ( ( N / 4 ) + 1 ) e. RR /\ ( ( N - 1 ) / 2 ) e. RR ) ) |
| 90 | 64 89 | syl | |- ( N e. ZZ -> ( ( ( |_ ` ( N / 4 ) ) + 1 ) e. RR /\ ( ( N / 4 ) + 1 ) e. RR /\ ( ( N - 1 ) / 2 ) e. RR ) ) |
| 91 | 90 | adantr | |- ( ( N e. ZZ /\ 6 <_ N ) -> ( ( ( |_ ` ( N / 4 ) ) + 1 ) e. RR /\ ( ( N / 4 ) + 1 ) e. RR /\ ( ( N - 1 ) / 2 ) e. RR ) ) |
| 92 | letr | |- ( ( ( ( |_ ` ( N / 4 ) ) + 1 ) e. RR /\ ( ( N / 4 ) + 1 ) e. RR /\ ( ( N - 1 ) / 2 ) e. RR ) -> ( ( ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N / 4 ) + 1 ) /\ ( ( N / 4 ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) -> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) ) |
|
| 93 | 91 92 | syl | |- ( ( N e. ZZ /\ 6 <_ N ) -> ( ( ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N / 4 ) + 1 ) /\ ( ( N / 4 ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) -> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) ) |
| 94 | 80 82 93 | mp2and | |- ( ( N e. ZZ /\ 6 <_ N ) -> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) |
| 95 | 94 | 3adant1 | |- ( ( 6 e. ZZ /\ N e. ZZ /\ 6 <_ N ) -> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) |
| 96 | 63 95 | sylbi | |- ( N e. ( ZZ>= ` 6 ) -> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) |
| 97 | 5p1e6 | |- ( 5 + 1 ) = 6 |
|
| 98 | 97 | fveq2i | |- ( ZZ>= ` ( 5 + 1 ) ) = ( ZZ>= ` 6 ) |
| 99 | 96 98 | eleq2s | |- ( N e. ( ZZ>= ` ( 5 + 1 ) ) -> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) |
| 100 | 62 99 | jaoi | |- ( ( N = 5 \/ N e. ( ZZ>= ` ( 5 + 1 ) ) ) -> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) |
| 101 | 21 100 | syl | |- ( N e. ( ZZ>= ` 5 ) -> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) |
| 102 | 20 101 | jaoi | |- ( ( N = 3 \/ N e. ( ZZ>= ` 5 ) ) -> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) |