This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The floor of a fraction is 0 iff the denominator is less than the numerator. (Contributed by AV, 8-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divfl0 | |- ( ( A e. NN0 /\ B e. NN ) -> ( A < B <-> ( |_ ` ( A / B ) ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0nndivcl | |- ( ( A e. NN0 /\ B e. NN ) -> ( A / B ) e. RR ) |
|
| 2 | 1 | recnd | |- ( ( A e. NN0 /\ B e. NN ) -> ( A / B ) e. CC ) |
| 3 | addlid | |- ( ( A / B ) e. CC -> ( 0 + ( A / B ) ) = ( A / B ) ) |
|
| 4 | 3 | eqcomd | |- ( ( A / B ) e. CC -> ( A / B ) = ( 0 + ( A / B ) ) ) |
| 5 | 2 4 | syl | |- ( ( A e. NN0 /\ B e. NN ) -> ( A / B ) = ( 0 + ( A / B ) ) ) |
| 6 | 5 | fveqeq2d | |- ( ( A e. NN0 /\ B e. NN ) -> ( ( |_ ` ( A / B ) ) = 0 <-> ( |_ ` ( 0 + ( A / B ) ) ) = 0 ) ) |
| 7 | 0z | |- 0 e. ZZ |
|
| 8 | flbi2 | |- ( ( 0 e. ZZ /\ ( A / B ) e. RR ) -> ( ( |_ ` ( 0 + ( A / B ) ) ) = 0 <-> ( 0 <_ ( A / B ) /\ ( A / B ) < 1 ) ) ) |
|
| 9 | 7 1 8 | sylancr | |- ( ( A e. NN0 /\ B e. NN ) -> ( ( |_ ` ( 0 + ( A / B ) ) ) = 0 <-> ( 0 <_ ( A / B ) /\ ( A / B ) < 1 ) ) ) |
| 10 | nn0ge0div | |- ( ( A e. NN0 /\ B e. NN ) -> 0 <_ ( A / B ) ) |
|
| 11 | 10 | biantrurd | |- ( ( A e. NN0 /\ B e. NN ) -> ( ( A / B ) < 1 <-> ( 0 <_ ( A / B ) /\ ( A / B ) < 1 ) ) ) |
| 12 | nn0re | |- ( A e. NN0 -> A e. RR ) |
|
| 13 | nnrp | |- ( B e. NN -> B e. RR+ ) |
|
| 14 | divlt1lt | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A / B ) < 1 <-> A < B ) ) |
|
| 15 | 12 13 14 | syl2an | |- ( ( A e. NN0 /\ B e. NN ) -> ( ( A / B ) < 1 <-> A < B ) ) |
| 16 | 11 15 | bitr3d | |- ( ( A e. NN0 /\ B e. NN ) -> ( ( 0 <_ ( A / B ) /\ ( A / B ) < 1 ) <-> A < B ) ) |
| 17 | 6 9 16 | 3bitrrd | |- ( ( A e. NN0 /\ B e. NN ) -> ( A < B <-> ( |_ ` ( A / B ) ) = 0 ) ) |