This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The floor of an integer greater than 1, divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 5-Jul-2021) (Proof shortened by AV, 9-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fldiv4lem1div2uz2 | |- ( N e. ( ZZ>= ` 2 ) -> ( |_ ` ( N / 4 ) ) <_ ( ( N - 1 ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz | |- ( N e. ( ZZ>= ` 2 ) -> N e. ZZ ) |
|
| 2 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 3 | id | |- ( N e. RR -> N e. RR ) |
|
| 4 | 4re | |- 4 e. RR |
|
| 5 | 4 | a1i | |- ( N e. RR -> 4 e. RR ) |
| 6 | 4ne0 | |- 4 =/= 0 |
|
| 7 | 6 | a1i | |- ( N e. RR -> 4 =/= 0 ) |
| 8 | 3 5 7 | redivcld | |- ( N e. RR -> ( N / 4 ) e. RR ) |
| 9 | flle | |- ( ( N / 4 ) e. RR -> ( |_ ` ( N / 4 ) ) <_ ( N / 4 ) ) |
|
| 10 | 1 2 8 9 | 4syl | |- ( N e. ( ZZ>= ` 2 ) -> ( |_ ` ( N / 4 ) ) <_ ( N / 4 ) ) |
| 11 | 1red | |- ( N e. ( ZZ>= ` 2 ) -> 1 e. RR ) |
|
| 12 | eluzelre | |- ( N e. ( ZZ>= ` 2 ) -> N e. RR ) |
|
| 13 | rehalfcl | |- ( N e. RR -> ( N / 2 ) e. RR ) |
|
| 14 | 1 2 13 | 3syl | |- ( N e. ( ZZ>= ` 2 ) -> ( N / 2 ) e. RR ) |
| 15 | 2rp | |- 2 e. RR+ |
|
| 16 | 15 | a1i | |- ( N e. ( ZZ>= ` 2 ) -> 2 e. RR+ ) |
| 17 | eluzle | |- ( N e. ( ZZ>= ` 2 ) -> 2 <_ N ) |
|
| 18 | divge1 | |- ( ( 2 e. RR+ /\ N e. RR /\ 2 <_ N ) -> 1 <_ ( N / 2 ) ) |
|
| 19 | 16 12 17 18 | syl3anc | |- ( N e. ( ZZ>= ` 2 ) -> 1 <_ ( N / 2 ) ) |
| 20 | eluzelcn | |- ( N e. ( ZZ>= ` 2 ) -> N e. CC ) |
|
| 21 | subhalfhalf | |- ( N e. CC -> ( N - ( N / 2 ) ) = ( N / 2 ) ) |
|
| 22 | 20 21 | syl | |- ( N e. ( ZZ>= ` 2 ) -> ( N - ( N / 2 ) ) = ( N / 2 ) ) |
| 23 | 19 22 | breqtrrd | |- ( N e. ( ZZ>= ` 2 ) -> 1 <_ ( N - ( N / 2 ) ) ) |
| 24 | 11 12 14 23 | lesubd | |- ( N e. ( ZZ>= ` 2 ) -> ( N / 2 ) <_ ( N - 1 ) ) |
| 25 | 2t2e4 | |- ( 2 x. 2 ) = 4 |
|
| 26 | 25 | eqcomi | |- 4 = ( 2 x. 2 ) |
| 27 | 26 | a1i | |- ( N e. ( ZZ>= ` 2 ) -> 4 = ( 2 x. 2 ) ) |
| 28 | 27 | oveq2d | |- ( N e. ( ZZ>= ` 2 ) -> ( N / 4 ) = ( N / ( 2 x. 2 ) ) ) |
| 29 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 30 | 29 | a1i | |- ( N e. ( ZZ>= ` 2 ) -> ( 2 e. CC /\ 2 =/= 0 ) ) |
| 31 | divdiv1 | |- ( ( N e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( N / 2 ) / 2 ) = ( N / ( 2 x. 2 ) ) ) |
|
| 32 | 20 30 30 31 | syl3anc | |- ( N e. ( ZZ>= ` 2 ) -> ( ( N / 2 ) / 2 ) = ( N / ( 2 x. 2 ) ) ) |
| 33 | 28 32 | eqtr4d | |- ( N e. ( ZZ>= ` 2 ) -> ( N / 4 ) = ( ( N / 2 ) / 2 ) ) |
| 34 | 33 | breq1d | |- ( N e. ( ZZ>= ` 2 ) -> ( ( N / 4 ) <_ ( ( N - 1 ) / 2 ) <-> ( ( N / 2 ) / 2 ) <_ ( ( N - 1 ) / 2 ) ) ) |
| 35 | peano2rem | |- ( N e. RR -> ( N - 1 ) e. RR ) |
|
| 36 | 12 35 | syl | |- ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. RR ) |
| 37 | 14 36 16 | lediv1d | |- ( N e. ( ZZ>= ` 2 ) -> ( ( N / 2 ) <_ ( N - 1 ) <-> ( ( N / 2 ) / 2 ) <_ ( ( N - 1 ) / 2 ) ) ) |
| 38 | 34 37 | bitr4d | |- ( N e. ( ZZ>= ` 2 ) -> ( ( N / 4 ) <_ ( ( N - 1 ) / 2 ) <-> ( N / 2 ) <_ ( N - 1 ) ) ) |
| 39 | 24 38 | mpbird | |- ( N e. ( ZZ>= ` 2 ) -> ( N / 4 ) <_ ( ( N - 1 ) / 2 ) ) |
| 40 | 8 | flcld | |- ( N e. RR -> ( |_ ` ( N / 4 ) ) e. ZZ ) |
| 41 | 40 | zred | |- ( N e. RR -> ( |_ ` ( N / 4 ) ) e. RR ) |
| 42 | 35 | rehalfcld | |- ( N e. RR -> ( ( N - 1 ) / 2 ) e. RR ) |
| 43 | 41 8 42 | 3jca | |- ( N e. RR -> ( ( |_ ` ( N / 4 ) ) e. RR /\ ( N / 4 ) e. RR /\ ( ( N - 1 ) / 2 ) e. RR ) ) |
| 44 | letr | |- ( ( ( |_ ` ( N / 4 ) ) e. RR /\ ( N / 4 ) e. RR /\ ( ( N - 1 ) / 2 ) e. RR ) -> ( ( ( |_ ` ( N / 4 ) ) <_ ( N / 4 ) /\ ( N / 4 ) <_ ( ( N - 1 ) / 2 ) ) -> ( |_ ` ( N / 4 ) ) <_ ( ( N - 1 ) / 2 ) ) ) |
|
| 45 | 1 2 43 44 | 4syl | |- ( N e. ( ZZ>= ` 2 ) -> ( ( ( |_ ` ( N / 4 ) ) <_ ( N / 4 ) /\ ( N / 4 ) <_ ( ( N - 1 ) / 2 ) ) -> ( |_ ` ( N / 4 ) ) <_ ( ( N - 1 ) / 2 ) ) ) |
| 46 | 10 39 45 | mp2and | |- ( N e. ( ZZ>= ` 2 ) -> ( |_ ` ( N / 4 ) ) <_ ( ( N - 1 ) / 2 ) ) |