This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer greater than 5, divided by 4 and increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | div4p1lem1div2 | |- ( ( N e. RR /\ 6 <_ N ) -> ( ( N / 4 ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6re | |- 6 e. RR |
|
| 2 | 1 | a1i | |- ( N e. RR -> 6 e. RR ) |
| 3 | id | |- ( N e. RR -> N e. RR ) |
|
| 4 | 2 3 3 | leadd2d | |- ( N e. RR -> ( 6 <_ N <-> ( N + 6 ) <_ ( N + N ) ) ) |
| 5 | 4 | biimpa | |- ( ( N e. RR /\ 6 <_ N ) -> ( N + 6 ) <_ ( N + N ) ) |
| 6 | recn | |- ( N e. RR -> N e. CC ) |
|
| 7 | 6 | times2d | |- ( N e. RR -> ( N x. 2 ) = ( N + N ) ) |
| 8 | 7 | adantr | |- ( ( N e. RR /\ 6 <_ N ) -> ( N x. 2 ) = ( N + N ) ) |
| 9 | 5 8 | breqtrrd | |- ( ( N e. RR /\ 6 <_ N ) -> ( N + 6 ) <_ ( N x. 2 ) ) |
| 10 | 4cn | |- 4 e. CC |
|
| 11 | 10 | a1i | |- ( N e. RR -> 4 e. CC ) |
| 12 | 2cn | |- 2 e. CC |
|
| 13 | 12 | a1i | |- ( N e. RR -> 2 e. CC ) |
| 14 | 6 11 13 | addassd | |- ( N e. RR -> ( ( N + 4 ) + 2 ) = ( N + ( 4 + 2 ) ) ) |
| 15 | 4p2e6 | |- ( 4 + 2 ) = 6 |
|
| 16 | 15 | oveq2i | |- ( N + ( 4 + 2 ) ) = ( N + 6 ) |
| 17 | 14 16 | eqtrdi | |- ( N e. RR -> ( ( N + 4 ) + 2 ) = ( N + 6 ) ) |
| 18 | 17 | breq1d | |- ( N e. RR -> ( ( ( N + 4 ) + 2 ) <_ ( N x. 2 ) <-> ( N + 6 ) <_ ( N x. 2 ) ) ) |
| 19 | 18 | adantr | |- ( ( N e. RR /\ 6 <_ N ) -> ( ( ( N + 4 ) + 2 ) <_ ( N x. 2 ) <-> ( N + 6 ) <_ ( N x. 2 ) ) ) |
| 20 | 9 19 | mpbird | |- ( ( N e. RR /\ 6 <_ N ) -> ( ( N + 4 ) + 2 ) <_ ( N x. 2 ) ) |
| 21 | 4re | |- 4 e. RR |
|
| 22 | 21 | a1i | |- ( N e. RR -> 4 e. RR ) |
| 23 | 4ne0 | |- 4 =/= 0 |
|
| 24 | 23 | a1i | |- ( N e. RR -> 4 =/= 0 ) |
| 25 | 3 22 24 | redivcld | |- ( N e. RR -> ( N / 4 ) e. RR ) |
| 26 | peano2re | |- ( ( N / 4 ) e. RR -> ( ( N / 4 ) + 1 ) e. RR ) |
|
| 27 | 25 26 | syl | |- ( N e. RR -> ( ( N / 4 ) + 1 ) e. RR ) |
| 28 | peano2rem | |- ( N e. RR -> ( N - 1 ) e. RR ) |
|
| 29 | 28 | rehalfcld | |- ( N e. RR -> ( ( N - 1 ) / 2 ) e. RR ) |
| 30 | 4pos | |- 0 < 4 |
|
| 31 | 21 30 | pm3.2i | |- ( 4 e. RR /\ 0 < 4 ) |
| 32 | 31 | a1i | |- ( N e. RR -> ( 4 e. RR /\ 0 < 4 ) ) |
| 33 | lemul1 | |- ( ( ( ( N / 4 ) + 1 ) e. RR /\ ( ( N - 1 ) / 2 ) e. RR /\ ( 4 e. RR /\ 0 < 4 ) ) -> ( ( ( N / 4 ) + 1 ) <_ ( ( N - 1 ) / 2 ) <-> ( ( ( N / 4 ) + 1 ) x. 4 ) <_ ( ( ( N - 1 ) / 2 ) x. 4 ) ) ) |
|
| 34 | 27 29 32 33 | syl3anc | |- ( N e. RR -> ( ( ( N / 4 ) + 1 ) <_ ( ( N - 1 ) / 2 ) <-> ( ( ( N / 4 ) + 1 ) x. 4 ) <_ ( ( ( N - 1 ) / 2 ) x. 4 ) ) ) |
| 35 | 25 | recnd | |- ( N e. RR -> ( N / 4 ) e. CC ) |
| 36 | 1cnd | |- ( N e. RR -> 1 e. CC ) |
|
| 37 | 6 11 24 | divcan1d | |- ( N e. RR -> ( ( N / 4 ) x. 4 ) = N ) |
| 38 | 10 | mullidi | |- ( 1 x. 4 ) = 4 |
| 39 | 38 | a1i | |- ( N e. RR -> ( 1 x. 4 ) = 4 ) |
| 40 | 37 39 | oveq12d | |- ( N e. RR -> ( ( ( N / 4 ) x. 4 ) + ( 1 x. 4 ) ) = ( N + 4 ) ) |
| 41 | 35 11 36 40 | joinlmuladdmuld | |- ( N e. RR -> ( ( ( N / 4 ) + 1 ) x. 4 ) = ( N + 4 ) ) |
| 42 | 2t2e4 | |- ( 2 x. 2 ) = 4 |
|
| 43 | 42 | eqcomi | |- 4 = ( 2 x. 2 ) |
| 44 | 43 | a1i | |- ( N e. RR -> 4 = ( 2 x. 2 ) ) |
| 45 | 44 | oveq2d | |- ( N e. RR -> ( ( ( N - 1 ) / 2 ) x. 4 ) = ( ( ( N - 1 ) / 2 ) x. ( 2 x. 2 ) ) ) |
| 46 | 29 | recnd | |- ( N e. RR -> ( ( N - 1 ) / 2 ) e. CC ) |
| 47 | mulass | |- ( ( ( ( N - 1 ) / 2 ) e. CC /\ 2 e. CC /\ 2 e. CC ) -> ( ( ( ( N - 1 ) / 2 ) x. 2 ) x. 2 ) = ( ( ( N - 1 ) / 2 ) x. ( 2 x. 2 ) ) ) |
|
| 48 | 47 | eqcomd | |- ( ( ( ( N - 1 ) / 2 ) e. CC /\ 2 e. CC /\ 2 e. CC ) -> ( ( ( N - 1 ) / 2 ) x. ( 2 x. 2 ) ) = ( ( ( ( N - 1 ) / 2 ) x. 2 ) x. 2 ) ) |
| 49 | 46 13 13 48 | syl3anc | |- ( N e. RR -> ( ( ( N - 1 ) / 2 ) x. ( 2 x. 2 ) ) = ( ( ( ( N - 1 ) / 2 ) x. 2 ) x. 2 ) ) |
| 50 | 28 | recnd | |- ( N e. RR -> ( N - 1 ) e. CC ) |
| 51 | 2ne0 | |- 2 =/= 0 |
|
| 52 | 51 | a1i | |- ( N e. RR -> 2 =/= 0 ) |
| 53 | 50 13 52 | divcan1d | |- ( N e. RR -> ( ( ( N - 1 ) / 2 ) x. 2 ) = ( N - 1 ) ) |
| 54 | 53 | oveq1d | |- ( N e. RR -> ( ( ( ( N - 1 ) / 2 ) x. 2 ) x. 2 ) = ( ( N - 1 ) x. 2 ) ) |
| 55 | 6 36 13 | subdird | |- ( N e. RR -> ( ( N - 1 ) x. 2 ) = ( ( N x. 2 ) - ( 1 x. 2 ) ) ) |
| 56 | 12 | mullidi | |- ( 1 x. 2 ) = 2 |
| 57 | 56 | a1i | |- ( N e. RR -> ( 1 x. 2 ) = 2 ) |
| 58 | 57 | oveq2d | |- ( N e. RR -> ( ( N x. 2 ) - ( 1 x. 2 ) ) = ( ( N x. 2 ) - 2 ) ) |
| 59 | 54 55 58 | 3eqtrd | |- ( N e. RR -> ( ( ( ( N - 1 ) / 2 ) x. 2 ) x. 2 ) = ( ( N x. 2 ) - 2 ) ) |
| 60 | 45 49 59 | 3eqtrd | |- ( N e. RR -> ( ( ( N - 1 ) / 2 ) x. 4 ) = ( ( N x. 2 ) - 2 ) ) |
| 61 | 41 60 | breq12d | |- ( N e. RR -> ( ( ( ( N / 4 ) + 1 ) x. 4 ) <_ ( ( ( N - 1 ) / 2 ) x. 4 ) <-> ( N + 4 ) <_ ( ( N x. 2 ) - 2 ) ) ) |
| 62 | 3 22 | readdcld | |- ( N e. RR -> ( N + 4 ) e. RR ) |
| 63 | 2re | |- 2 e. RR |
|
| 64 | 63 | a1i | |- ( N e. RR -> 2 e. RR ) |
| 65 | 3 64 | remulcld | |- ( N e. RR -> ( N x. 2 ) e. RR ) |
| 66 | leaddsub | |- ( ( ( N + 4 ) e. RR /\ 2 e. RR /\ ( N x. 2 ) e. RR ) -> ( ( ( N + 4 ) + 2 ) <_ ( N x. 2 ) <-> ( N + 4 ) <_ ( ( N x. 2 ) - 2 ) ) ) |
|
| 67 | 66 | bicomd | |- ( ( ( N + 4 ) e. RR /\ 2 e. RR /\ ( N x. 2 ) e. RR ) -> ( ( N + 4 ) <_ ( ( N x. 2 ) - 2 ) <-> ( ( N + 4 ) + 2 ) <_ ( N x. 2 ) ) ) |
| 68 | 62 64 65 67 | syl3anc | |- ( N e. RR -> ( ( N + 4 ) <_ ( ( N x. 2 ) - 2 ) <-> ( ( N + 4 ) + 2 ) <_ ( N x. 2 ) ) ) |
| 69 | 34 61 68 | 3bitrd | |- ( N e. RR -> ( ( ( N / 4 ) + 1 ) <_ ( ( N - 1 ) / 2 ) <-> ( ( N + 4 ) + 2 ) <_ ( N x. 2 ) ) ) |
| 70 | 69 | adantr | |- ( ( N e. RR /\ 6 <_ N ) -> ( ( ( N / 4 ) + 1 ) <_ ( ( N - 1 ) / 2 ) <-> ( ( N + 4 ) + 2 ) <_ ( N x. 2 ) ) ) |
| 71 | 20 70 | mpbird | |- ( ( N e. RR /\ 6 <_ N ) -> ( ( N / 4 ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) |