This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fldiv4p1lem1div2 | ⊢ ( ( 𝑁 = 3 ∨ 𝑁 ∈ ( ℤ≥ ‘ 5 ) ) → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) + 1 ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1le1 | ⊢ 1 ≤ 1 | |
| 2 | 1 | a1i | ⊢ ( 𝑁 = 3 → 1 ≤ 1 ) |
| 3 | fvoveq1 | ⊢ ( 𝑁 = 3 → ( ⌊ ‘ ( 𝑁 / 4 ) ) = ( ⌊ ‘ ( 3 / 4 ) ) ) | |
| 4 | 3lt4 | ⊢ 3 < 4 | |
| 5 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 6 | 4nn | ⊢ 4 ∈ ℕ | |
| 7 | divfl0 | ⊢ ( ( 3 ∈ ℕ0 ∧ 4 ∈ ℕ ) → ( 3 < 4 ↔ ( ⌊ ‘ ( 3 / 4 ) ) = 0 ) ) | |
| 8 | 5 6 7 | mp2an | ⊢ ( 3 < 4 ↔ ( ⌊ ‘ ( 3 / 4 ) ) = 0 ) |
| 9 | 4 8 | mpbi | ⊢ ( ⌊ ‘ ( 3 / 4 ) ) = 0 |
| 10 | 3 9 | eqtrdi | ⊢ ( 𝑁 = 3 → ( ⌊ ‘ ( 𝑁 / 4 ) ) = 0 ) |
| 11 | 10 | oveq1d | ⊢ ( 𝑁 = 3 → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) + 1 ) = ( 0 + 1 ) ) |
| 12 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 13 | 11 12 | eqtrdi | ⊢ ( 𝑁 = 3 → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) + 1 ) = 1 ) |
| 14 | oveq1 | ⊢ ( 𝑁 = 3 → ( 𝑁 − 1 ) = ( 3 − 1 ) ) | |
| 15 | 3m1e2 | ⊢ ( 3 − 1 ) = 2 | |
| 16 | 14 15 | eqtrdi | ⊢ ( 𝑁 = 3 → ( 𝑁 − 1 ) = 2 ) |
| 17 | 16 | oveq1d | ⊢ ( 𝑁 = 3 → ( ( 𝑁 − 1 ) / 2 ) = ( 2 / 2 ) ) |
| 18 | 2div2e1 | ⊢ ( 2 / 2 ) = 1 | |
| 19 | 17 18 | eqtrdi | ⊢ ( 𝑁 = 3 → ( ( 𝑁 − 1 ) / 2 ) = 1 ) |
| 20 | 2 13 19 | 3brtr4d | ⊢ ( 𝑁 = 3 → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) + 1 ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) |
| 21 | uzp1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) → ( 𝑁 = 5 ∨ 𝑁 ∈ ( ℤ≥ ‘ ( 5 + 1 ) ) ) ) | |
| 22 | 2re | ⊢ 2 ∈ ℝ | |
| 23 | 22 | leidi | ⊢ 2 ≤ 2 |
| 24 | 23 | a1i | ⊢ ( 𝑁 = 5 → 2 ≤ 2 ) |
| 25 | fvoveq1 | ⊢ ( 𝑁 = 5 → ( ⌊ ‘ ( 𝑁 / 4 ) ) = ( ⌊ ‘ ( 5 / 4 ) ) ) | |
| 26 | df-5 | ⊢ 5 = ( 4 + 1 ) | |
| 27 | 26 | oveq1i | ⊢ ( 5 / 4 ) = ( ( 4 + 1 ) / 4 ) |
| 28 | 4cn | ⊢ 4 ∈ ℂ | |
| 29 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 30 | 4ne0 | ⊢ 4 ≠ 0 | |
| 31 | 28 29 28 30 | divdiri | ⊢ ( ( 4 + 1 ) / 4 ) = ( ( 4 / 4 ) + ( 1 / 4 ) ) |
| 32 | 28 30 | dividi | ⊢ ( 4 / 4 ) = 1 |
| 33 | 32 | oveq1i | ⊢ ( ( 4 / 4 ) + ( 1 / 4 ) ) = ( 1 + ( 1 / 4 ) ) |
| 34 | 27 31 33 | 3eqtri | ⊢ ( 5 / 4 ) = ( 1 + ( 1 / 4 ) ) |
| 35 | 34 | fveq2i | ⊢ ( ⌊ ‘ ( 5 / 4 ) ) = ( ⌊ ‘ ( 1 + ( 1 / 4 ) ) ) |
| 36 | 1re | ⊢ 1 ∈ ℝ | |
| 37 | 0le1 | ⊢ 0 ≤ 1 | |
| 38 | 4re | ⊢ 4 ∈ ℝ | |
| 39 | 4pos | ⊢ 0 < 4 | |
| 40 | divge0 | ⊢ ( ( ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ∧ ( 4 ∈ ℝ ∧ 0 < 4 ) ) → 0 ≤ ( 1 / 4 ) ) | |
| 41 | 36 37 38 39 40 | mp4an | ⊢ 0 ≤ ( 1 / 4 ) |
| 42 | 1lt4 | ⊢ 1 < 4 | |
| 43 | recgt1 | ⊢ ( ( 4 ∈ ℝ ∧ 0 < 4 ) → ( 1 < 4 ↔ ( 1 / 4 ) < 1 ) ) | |
| 44 | 38 39 43 | mp2an | ⊢ ( 1 < 4 ↔ ( 1 / 4 ) < 1 ) |
| 45 | 42 44 | mpbi | ⊢ ( 1 / 4 ) < 1 |
| 46 | 1z | ⊢ 1 ∈ ℤ | |
| 47 | 38 30 | rereccli | ⊢ ( 1 / 4 ) ∈ ℝ |
| 48 | flbi2 | ⊢ ( ( 1 ∈ ℤ ∧ ( 1 / 4 ) ∈ ℝ ) → ( ( ⌊ ‘ ( 1 + ( 1 / 4 ) ) ) = 1 ↔ ( 0 ≤ ( 1 / 4 ) ∧ ( 1 / 4 ) < 1 ) ) ) | |
| 49 | 46 47 48 | mp2an | ⊢ ( ( ⌊ ‘ ( 1 + ( 1 / 4 ) ) ) = 1 ↔ ( 0 ≤ ( 1 / 4 ) ∧ ( 1 / 4 ) < 1 ) ) |
| 50 | 41 45 49 | mpbir2an | ⊢ ( ⌊ ‘ ( 1 + ( 1 / 4 ) ) ) = 1 |
| 51 | 35 50 | eqtri | ⊢ ( ⌊ ‘ ( 5 / 4 ) ) = 1 |
| 52 | 25 51 | eqtrdi | ⊢ ( 𝑁 = 5 → ( ⌊ ‘ ( 𝑁 / 4 ) ) = 1 ) |
| 53 | 52 | oveq1d | ⊢ ( 𝑁 = 5 → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) + 1 ) = ( 1 + 1 ) ) |
| 54 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 55 | 53 54 | eqtrdi | ⊢ ( 𝑁 = 5 → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) + 1 ) = 2 ) |
| 56 | oveq1 | ⊢ ( 𝑁 = 5 → ( 𝑁 − 1 ) = ( 5 − 1 ) ) | |
| 57 | 5m1e4 | ⊢ ( 5 − 1 ) = 4 | |
| 58 | 56 57 | eqtrdi | ⊢ ( 𝑁 = 5 → ( 𝑁 − 1 ) = 4 ) |
| 59 | 58 | oveq1d | ⊢ ( 𝑁 = 5 → ( ( 𝑁 − 1 ) / 2 ) = ( 4 / 2 ) ) |
| 60 | 4div2e2 | ⊢ ( 4 / 2 ) = 2 | |
| 61 | 59 60 | eqtrdi | ⊢ ( 𝑁 = 5 → ( ( 𝑁 − 1 ) / 2 ) = 2 ) |
| 62 | 24 55 61 | 3brtr4d | ⊢ ( 𝑁 = 5 → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) + 1 ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) |
| 63 | eluz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 6 ) ↔ ( 6 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁 ) ) | |
| 64 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 65 | id | ⊢ ( 𝑁 ∈ ℝ → 𝑁 ∈ ℝ ) | |
| 66 | 38 | a1i | ⊢ ( 𝑁 ∈ ℝ → 4 ∈ ℝ ) |
| 67 | 30 | a1i | ⊢ ( 𝑁 ∈ ℝ → 4 ≠ 0 ) |
| 68 | 65 66 67 | redivcld | ⊢ ( 𝑁 ∈ ℝ → ( 𝑁 / 4 ) ∈ ℝ ) |
| 69 | flle | ⊢ ( ( 𝑁 / 4 ) ∈ ℝ → ( ⌊ ‘ ( 𝑁 / 4 ) ) ≤ ( 𝑁 / 4 ) ) | |
| 70 | 64 68 69 | 3syl | ⊢ ( 𝑁 ∈ ℤ → ( ⌊ ‘ ( 𝑁 / 4 ) ) ≤ ( 𝑁 / 4 ) ) |
| 71 | 70 | adantr | ⊢ ( ( 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁 ) → ( ⌊ ‘ ( 𝑁 / 4 ) ) ≤ ( 𝑁 / 4 ) ) |
| 72 | 68 | flcld | ⊢ ( 𝑁 ∈ ℝ → ( ⌊ ‘ ( 𝑁 / 4 ) ) ∈ ℤ ) |
| 73 | 72 | zred | ⊢ ( 𝑁 ∈ ℝ → ( ⌊ ‘ ( 𝑁 / 4 ) ) ∈ ℝ ) |
| 74 | 36 | a1i | ⊢ ( 𝑁 ∈ ℝ → 1 ∈ ℝ ) |
| 75 | 73 68 74 | 3jca | ⊢ ( 𝑁 ∈ ℝ → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) ∈ ℝ ∧ ( 𝑁 / 4 ) ∈ ℝ ∧ 1 ∈ ℝ ) ) |
| 76 | 64 75 | syl | ⊢ ( 𝑁 ∈ ℤ → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) ∈ ℝ ∧ ( 𝑁 / 4 ) ∈ ℝ ∧ 1 ∈ ℝ ) ) |
| 77 | 76 | adantr | ⊢ ( ( 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁 ) → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) ∈ ℝ ∧ ( 𝑁 / 4 ) ∈ ℝ ∧ 1 ∈ ℝ ) ) |
| 78 | leadd1 | ⊢ ( ( ( ⌊ ‘ ( 𝑁 / 4 ) ) ∈ ℝ ∧ ( 𝑁 / 4 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) ≤ ( 𝑁 / 4 ) ↔ ( ( ⌊ ‘ ( 𝑁 / 4 ) ) + 1 ) ≤ ( ( 𝑁 / 4 ) + 1 ) ) ) | |
| 79 | 77 78 | syl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁 ) → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) ≤ ( 𝑁 / 4 ) ↔ ( ( ⌊ ‘ ( 𝑁 / 4 ) ) + 1 ) ≤ ( ( 𝑁 / 4 ) + 1 ) ) ) |
| 80 | 71 79 | mpbid | ⊢ ( ( 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁 ) → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) + 1 ) ≤ ( ( 𝑁 / 4 ) + 1 ) ) |
| 81 | div4p1lem1div2 | ⊢ ( ( 𝑁 ∈ ℝ ∧ 6 ≤ 𝑁 ) → ( ( 𝑁 / 4 ) + 1 ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) | |
| 82 | 64 81 | sylan | ⊢ ( ( 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁 ) → ( ( 𝑁 / 4 ) + 1 ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) |
| 83 | peano2re | ⊢ ( ( ⌊ ‘ ( 𝑁 / 4 ) ) ∈ ℝ → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) + 1 ) ∈ ℝ ) | |
| 84 | 73 83 | syl | ⊢ ( 𝑁 ∈ ℝ → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) + 1 ) ∈ ℝ ) |
| 85 | peano2re | ⊢ ( ( 𝑁 / 4 ) ∈ ℝ → ( ( 𝑁 / 4 ) + 1 ) ∈ ℝ ) | |
| 86 | 68 85 | syl | ⊢ ( 𝑁 ∈ ℝ → ( ( 𝑁 / 4 ) + 1 ) ∈ ℝ ) |
| 87 | peano2rem | ⊢ ( 𝑁 ∈ ℝ → ( 𝑁 − 1 ) ∈ ℝ ) | |
| 88 | 87 | rehalfcld | ⊢ ( 𝑁 ∈ ℝ → ( ( 𝑁 − 1 ) / 2 ) ∈ ℝ ) |
| 89 | 84 86 88 | 3jca | ⊢ ( 𝑁 ∈ ℝ → ( ( ( ⌊ ‘ ( 𝑁 / 4 ) ) + 1 ) ∈ ℝ ∧ ( ( 𝑁 / 4 ) + 1 ) ∈ ℝ ∧ ( ( 𝑁 − 1 ) / 2 ) ∈ ℝ ) ) |
| 90 | 64 89 | syl | ⊢ ( 𝑁 ∈ ℤ → ( ( ( ⌊ ‘ ( 𝑁 / 4 ) ) + 1 ) ∈ ℝ ∧ ( ( 𝑁 / 4 ) + 1 ) ∈ ℝ ∧ ( ( 𝑁 − 1 ) / 2 ) ∈ ℝ ) ) |
| 91 | 90 | adantr | ⊢ ( ( 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁 ) → ( ( ( ⌊ ‘ ( 𝑁 / 4 ) ) + 1 ) ∈ ℝ ∧ ( ( 𝑁 / 4 ) + 1 ) ∈ ℝ ∧ ( ( 𝑁 − 1 ) / 2 ) ∈ ℝ ) ) |
| 92 | letr | ⊢ ( ( ( ( ⌊ ‘ ( 𝑁 / 4 ) ) + 1 ) ∈ ℝ ∧ ( ( 𝑁 / 4 ) + 1 ) ∈ ℝ ∧ ( ( 𝑁 − 1 ) / 2 ) ∈ ℝ ) → ( ( ( ( ⌊ ‘ ( 𝑁 / 4 ) ) + 1 ) ≤ ( ( 𝑁 / 4 ) + 1 ) ∧ ( ( 𝑁 / 4 ) + 1 ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) + 1 ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) | |
| 93 | 91 92 | syl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁 ) → ( ( ( ( ⌊ ‘ ( 𝑁 / 4 ) ) + 1 ) ≤ ( ( 𝑁 / 4 ) + 1 ) ∧ ( ( 𝑁 / 4 ) + 1 ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) + 1 ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) |
| 94 | 80 82 93 | mp2and | ⊢ ( ( 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁 ) → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) + 1 ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) |
| 95 | 94 | 3adant1 | ⊢ ( ( 6 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁 ) → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) + 1 ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) |
| 96 | 63 95 | sylbi | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 6 ) → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) + 1 ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) |
| 97 | 5p1e6 | ⊢ ( 5 + 1 ) = 6 | |
| 98 | 97 | fveq2i | ⊢ ( ℤ≥ ‘ ( 5 + 1 ) ) = ( ℤ≥ ‘ 6 ) |
| 99 | 96 98 | eleq2s | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 5 + 1 ) ) → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) + 1 ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) |
| 100 | 62 99 | jaoi | ⊢ ( ( 𝑁 = 5 ∨ 𝑁 ∈ ( ℤ≥ ‘ ( 5 + 1 ) ) ) → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) + 1 ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) |
| 101 | 21 100 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) + 1 ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) |
| 102 | 20 101 | jaoi | ⊢ ( ( 𝑁 = 3 ∨ 𝑁 ∈ ( ℤ≥ ‘ 5 ) ) → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) + 1 ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) |