This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of natural numbers is infinite. Corollary 6D(b) of Enderton p. 136. (Contributed by NM, 2-Jun-1998) Avoid ax-pow . (Revised by BTernaryTau, 2-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ominf | |- -. _om e. Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi | |- ( _om e. Fin <-> E. x e. _om _om ~~ x ) |
|
| 2 | nnord | |- ( x e. _om -> Ord x ) |
|
| 3 | ordom | |- Ord _om |
|
| 4 | ordelssne | |- ( ( Ord x /\ Ord _om ) -> ( x e. _om <-> ( x C_ _om /\ x =/= _om ) ) ) |
|
| 5 | 2 3 4 | sylancl | |- ( x e. _om -> ( x e. _om <-> ( x C_ _om /\ x =/= _om ) ) ) |
| 6 | 5 | ibi | |- ( x e. _om -> ( x C_ _om /\ x =/= _om ) ) |
| 7 | df-pss | |- ( x C. _om <-> ( x C_ _om /\ x =/= _om ) ) |
|
| 8 | 6 7 | sylibr | |- ( x e. _om -> x C. _om ) |
| 9 | nnfi | |- ( x e. _om -> x e. Fin ) |
|
| 10 | ensymfib | |- ( x e. Fin -> ( x ~~ _om <-> _om ~~ x ) ) |
|
| 11 | 9 10 | syl | |- ( x e. _om -> ( x ~~ _om <-> _om ~~ x ) ) |
| 12 | 11 | biimpar | |- ( ( x e. _om /\ _om ~~ x ) -> x ~~ _om ) |
| 13 | pssinf | |- ( ( x C. _om /\ x ~~ _om ) -> -. _om e. Fin ) |
|
| 14 | 8 12 13 | syl2an2r | |- ( ( x e. _om /\ _om ~~ x ) -> -. _om e. Fin ) |
| 15 | 14 | rexlimiva | |- ( E. x e. _om _om ~~ x -> -. _om e. Fin ) |
| 16 | 1 15 | sylbi | |- ( _om e. Fin -> -. _om e. Fin ) |
| 17 | pm2.01 | |- ( ( _om e. Fin -> -. _om e. Fin ) -> -. _om e. Fin ) |
|
| 18 | 16 17 | ax-mp | |- -. _om e. Fin |