This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in union of a class abstraction. (Contributed by NM, 11-Aug-1994) (Revised by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eluniab | |- ( A e. U. { x | ph } <-> E. x ( A e. x /\ ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni | |- ( A e. U. { x | ph } <-> E. y ( A e. y /\ y e. { x | ph } ) ) |
|
| 2 | nfv | |- F/ x A e. y |
|
| 3 | nfsab1 | |- F/ x y e. { x | ph } |
|
| 4 | 2 3 | nfan | |- F/ x ( A e. y /\ y e. { x | ph } ) |
| 5 | nfv | |- F/ y ( A e. x /\ ph ) |
|
| 6 | eleq2w | |- ( y = x -> ( A e. y <-> A e. x ) ) |
|
| 7 | eleq1w | |- ( y = x -> ( y e. { x | ph } <-> x e. { x | ph } ) ) |
|
| 8 | abid | |- ( x e. { x | ph } <-> ph ) |
|
| 9 | 7 8 | bitrdi | |- ( y = x -> ( y e. { x | ph } <-> ph ) ) |
| 10 | 6 9 | anbi12d | |- ( y = x -> ( ( A e. y /\ y e. { x | ph } ) <-> ( A e. x /\ ph ) ) ) |
| 11 | 4 5 10 | cbvexv1 | |- ( E. y ( A e. y /\ y e. { x | ph } ) <-> E. x ( A e. x /\ ph ) ) |
| 12 | 1 11 | bitri | |- ( A e. U. { x | ph } <-> E. x ( A e. x /\ ph ) ) |