This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . X is either contained in or disjoint from all input sets. (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fin23lem.a | |- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
|
| Assertion | fin23lem20 | |- ( A e. _om -> ( |^| ran U C_ ( t ` A ) \/ ( |^| ran U i^i ( t ` A ) ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | |- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
|
| 2 | 1 | fnseqom | |- U Fn _om |
| 3 | peano2 | |- ( A e. _om -> suc A e. _om ) |
|
| 4 | fnfvelrn | |- ( ( U Fn _om /\ suc A e. _om ) -> ( U ` suc A ) e. ran U ) |
|
| 5 | 2 3 4 | sylancr | |- ( A e. _om -> ( U ` suc A ) e. ran U ) |
| 6 | intss1 | |- ( ( U ` suc A ) e. ran U -> |^| ran U C_ ( U ` suc A ) ) |
|
| 7 | 5 6 | syl | |- ( A e. _om -> |^| ran U C_ ( U ` suc A ) ) |
| 8 | 1 | fin23lem19 | |- ( A e. _om -> ( ( U ` suc A ) C_ ( t ` A ) \/ ( ( U ` suc A ) i^i ( t ` A ) ) = (/) ) ) |
| 9 | sstr2 | |- ( |^| ran U C_ ( U ` suc A ) -> ( ( U ` suc A ) C_ ( t ` A ) -> |^| ran U C_ ( t ` A ) ) ) |
|
| 10 | ssdisj | |- ( ( |^| ran U C_ ( U ` suc A ) /\ ( ( U ` suc A ) i^i ( t ` A ) ) = (/) ) -> ( |^| ran U i^i ( t ` A ) ) = (/) ) |
|
| 11 | 10 | ex | |- ( |^| ran U C_ ( U ` suc A ) -> ( ( ( U ` suc A ) i^i ( t ` A ) ) = (/) -> ( |^| ran U i^i ( t ` A ) ) = (/) ) ) |
| 12 | 9 11 | orim12d | |- ( |^| ran U C_ ( U ` suc A ) -> ( ( ( U ` suc A ) C_ ( t ` A ) \/ ( ( U ` suc A ) i^i ( t ` A ) ) = (/) ) -> ( |^| ran U C_ ( t ` A ) \/ ( |^| ran U i^i ( t ` A ) ) = (/) ) ) ) |
| 13 | 7 8 12 | sylc | |- ( A e. _om -> ( |^| ran U C_ ( t ` A ) \/ ( |^| ran U i^i ( t ` A ) ) = (/) ) ) |